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Near-field diffraction tomography with diffuse photon density waves
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An angular spectrum algorithm is presented for fast, near-field diffraction tomographic imaging with diffuse
photon density waves in highly scattering media. A general relation inK space is derived that connects the
spatial variations of the optical properties of heterogeneities to the spatial spectra of the measured scattered
diffuse photon density waves. The theory is verified experimentally for situations when boundary effects can
be neglected. We further describe how to reconstruct absorption and scattering properties simultaneously, and
how to incorporate boundary conditions into this angular spectrum algorithm for a turbid medium of finite size
~e.g., the slab medium!. Limitations and potential improvements of the near-field diffraction tomography are
also discussed.

PACS number~s!: 87.10.1e, 42.25.Fx, 42.30.Wb, 42.62.Be
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I. INTRODUCTION

Optical radiation was used to image breast tumors by
shadowing effect as early as the 1920s@1#. However, recent
advances in light generation and detection, along with
provements in our theoretical understanding of near-infra
~NIR! light propagation in tissue-like highly scattering turb
media have opened new possibilities for optical imaging
the interior of thick biological tissues@2#. In highly scatter-
ing media such as biological tissue, light propagation is
scribed adequately within the diffusion model of phot
transport@3–5#. It has been shown by several investigato
that diffuse photon density waves, which are created ins
highly scattering media by an intensity modulated lig
source, obey a Helmholtz wave equation with a comp
wave number@6,7#. In spite of complexities resulting from
strong tissue scattering, diffusing photons offer many attr
tive features for imaging thick tissue. These features incl
noninvasiveness, low cost, and unique optical contrast
spectroscopic signatures with clinical and physiological r
evance@8,9#.

The goal of diffuse optical imaging is to reconstruct a lo
resolution map of heterogeneous absorption and scatte
variations from the measurements of diffuse photons o
sample surface. Image reconstruction entails solving the
verse problem. Most quantitative optical image reconstr
tion algorithms such as the algebraic reconstruction te
nique ~ART!, the simultaneous iterative reconstructio
technique~SIRT! @10#, the Newton-Raphson technique com
bined with finite element numerical method@11–13#, the
conjugate gradient descent technique@14#, and singular value
decomposition~SVD! @15#, rely on iterative schemes in
least-square sense. The optical image reconstruction th
fore requires a significant amount of computational resour
and time.

Recently, we showed that by using the techniques of

*Present address: Department of Electrical Engineering and C
puter Science, Massachusetts Institute of Technology, Cambri
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PRE 611063-651X/2000/61~4!/4295~15!/$15.00
e

-
d

f

-

s
e

t
x

c-
e
d

l-

ng
a

n-
-

h-

re-
s

f-

fraction tomography@16,17#, it is possible to rapidly recon-
struct thin slice and spherical objects whose absorp
and/or scattering parameters differ from the background
mogeneous scattering medium@20#. Our image reconstruc
tion algorithm, based upon diffraction tomography techniq
~called angular spectrum algorithm in this paper!, is rapid,
permitting object localization and characterization in;1000
volume-element samples on sub-second computational
scales. Such an angular spectrum algorithm has recentl
tracted the attention of many researchers in photon migra
field @18,19#. In this paper we provide a more complete d
cussion of the results reported in those earlier papers, an
provide a detailed analysis of this algorithm incorporati
the effects of finite boundaries. We first derive the gene
integral solution of the total and scattered photon den
waves in a heterogeneous turbid medium within the first
der Born approximation~Secs. II, III, and IV!. These ses-
sions are largely reviews, but are included for completen
and clarity. We next derive a relation inK space between the
spatial spectrum of the heterogeneity function and the spa
spectrum of the measured scattered diffuse photon den
wave ~Sec. V A!. Experimental results are presented
verify the feasibility of the angular spectrum algorithm f
image reconstruction. We then describe a method to rec
struct the absorption and scattering properties simultaneo
with this algorithm. Some limitations and potential improv
ments of the diffraction tomography are discussed in Sec.
Finally, we illustrate how to incorporate boundary conditio
into the angular spectrum algorithm for a turbid medium
finite size, in particular, the slab medium and the sem
infinite medium~Sec. VII!.

II. PHOTON DIFFUSION EQUATION
IN HETEROGENEOUS MEDIA –A

PERTURBATION APPROACH

Light transport in highly scattering turbid media is ofte
well described by photon diffusion@2#. Consider a light
source atr s with its intensity sinusoidally modulated a
modulation frequencyf, e.g., the source term isS(r ,t)

m-
e,
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4296 PRE 61XINGDE LI et al.
5S(r )e2 ivt5M0e2 ivtd(r2r s), wherev52p f is the angu-
lar source modulation frequency,1 M0 is the source strength
representing the number of photons emitted per second. C
sider steady-state photon diffusion in which the photon
enceF(r ,t) has the same time dependence as the sou
i.e., F(r ,t)5F(r )e2 ivt. It is straight forward to show tha
the photon fluenceF(r ) satisfies the photon diffusion equa
tion @3–5#:

“•„D“F~r !…2vmaF~r !1 ivF~r !52vS~r !. ~1!

Here the common time dependence exp(2 ivt) of the flu-
enceF(r ) and the sourceS(r ) are omitted.v is the speed of
light in the turbid medium;D5v/3ms8 is photon diffusion
coefficient;ma andms8 are respectively the optical absorptio
and reduced scattering coefficients.

In a homogeneous medium, the absorption and scatte
coefficients (ma0 andms08 ) are constant, and the above equ
tion reduces to a simple Helmholtz equation:

~¹21k0
2!F0~r !523ms08 S~r !. ~2!

Here the wave number k0 is complex and k0

5@3ms08 (2ma01 iv/v)#1/2 with Im(k0).0 to ensure that
the photon density goes to zero at a large distance.

In an optically heterogeneous turbid medium, the sph
cal wave fronts of the background wave are distorted
inhomogeneities. As illustrated in Fig. 1, the total phot
density waveF(r ) is the sum of the background waveF0(r )
and the scattered waveFsc(r )

F~r !5F0~r !1Fsc~r !. ~3!

The background waveF0(r ) represents the photon densi
wave in a homogeneous turbid medium for an arbitrary
ometry; the scattered wave is produced by optical inhom
geneities in an otherwise homogeneous medium with
same geometry as the background wave. The scattered
is determined by characteristics of the inhomogeneity s
as its size, shape, position, and its absorption and scatte

1The continuous-wave~CW! case is a special case wherev50
and the frequency domain analysis can be readily applied to the
case.

FIG. 1. In the presence of optical inhomogeneities, the spher
wave fronts of the background wave are distorted and the scatt
wave is generated. The total photon density wave is the sum o
background wave and the scattered wave.
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properties. The goal of optical tomography is to reconstr
the map of these heterogeneous optical properties from m
surements of the scattered wave.

In a heterogeneous medium we write the optical prop
ties (ma andms8) as the sum of background optical properti
(ma0 , ms08 ) and the variations relative to the backgrou
(dma , dms8), i.e.,

ma~r !5ma01dma~r !, ~4!

ms8~r !5ms08 1dms8~r !. ~5!

Consider the case of weak optical inhomogeneities wh
dma!ma0 and dms8!ms08 . The optical inhomogeneities in
troduce a weak perturbation to the background wave,
uFsc(r )u!uF0(r )u. Substituting Eqs.~4! and~5! into Eq. ~1!
and keeping only the zeroth and first order terms in opti
property variations as well as in the scattered wave, we

~¹21k0
2!F~r !52

v
D0

F11
dms8~r !

ms08
GS~r !2Tabs~r !

2Tsc~r !, ~6!

where we have introduced the heterogeneity functio
Tabs(r ) andTsc(r ) representing the perturbations due to t
absorption and scattering variations. They are

Tabs~r !52
v

D0
F0~r !dma~r !, ~7!

Tsc~r !5
3D0k0

2

v
F0~r !dms8~r !2

“@dms8~r !#

ms08
•“F0~r !.

~8!

Note thatdms8(r )/ms08 S(r ) is zero as long as the source
outside the inhomogeneity~which is generally the case in
practice!, and therefore we can drop this term from Eq.~6!.
In addition we assume, for simplicity, that the scattering v
ies slowly in space so that the term“@ms08 1dms8(r )#/
ms08 •“F0(r ) can be neglected. We thus have the followi
simplified equation for the total photon density waveF(r )
within the first order Born approximation

~¹21k0
2!F~r !52

v
D0

S~r !2T~r !, ~9!

where T(r )5Tabs(r )1Tsc(r ) and the heterogeneity func
tions Tabs(r ) andTsc(r ) are given by

Tabs~r !52
v

D0
F0~r !dma~r ! ~10!

Tsc~r !5
3D0k0

2

v
F0~r !dms8~r !. ~11!

We see that the heterogeneity functions can be treate
equivalent ‘‘source’’ terms, which give rise to the scatter
componentFsc(r ) of the total diffuse photon density wav
F(r ).
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III. TOTAL DIFFUSE PHOTON DENSITY WAVE
IN HETEROGENEOUS TURBID MEDIA — THE

GREEN’S FUNCTION APPROACH

We will take a Green’s function approach to derive t
total and therefore the scattered photon density wave
heterogeneous highly scattering medium. Consider
Green’s function in turbid media which satisfies

~¹21k0
2!G~r ,r 8!52d~r ,r 8!. ~12!

Using the Green’s theorem, we obtain an integral expres
for the total optical density waveF(r )

F~r !5
v

D0
E

V
S~r 8!G~r ,r 8!d3r 81E

V
T~r 8!G~r ,r 8!d3r 8

1E
S
FG~r ,r 8!

]F~r 8!

]n8
2F~r 8!

]G~r ,r 8!

]n8
GdA8.

~13!

The first term on the right-hand side of Eq.~13! is a volume
integral of the light source over the entire turbid medium
gives us the background wave. The second term is a vol
integral of the heterogeneity function over the entire tur
medium and it determines the perturbation resulting from
optical heterogeneities. The third term is a surface integ
over the closed surface of the entire turbid medium. It ta
into account the boundary effects on the total photon den
wave, and it includes contributions to the total photon d
sity wave from both the background wave and the scatte
wave on the boundary.n8 in the surface term denotes th
surface normal pointing outward. For an infinite heterog
neous medium, this surface term is zero since the enclo
surface of an infinite medium is at infinity. Therefore th
scattered wave can be simply separated from the backgro
wave. For a finite turbid medium, however the separation
the background wave component from the scattered w
component in the surface term is generally difficult. It
advantageous therefore to remove the surface integral f
the total photon density wave by choosing an appropr
Green’s function. We will consider this complicated~yet
more realistic! case at the end of this paper. We will sta
with a simple case - the infinite geometry case.

IV. SCATTERED WAVE IN INFINITE HETEROGENEOUS
TURBID MEDIA

As shown in Fig. 1, in the presence of optical hetero
neities, the total photon density wave consists of the ba
ground wave and the scattered wave, and the scattered
carries the information of the optical inhomogeneities. For
infinite geometry, the surface integral in Eq.~13! disappears.
The background wave in this case is given by the first te
~volume integral of the source! on the right-hand side of Eq
~13!. For an infinite geometry, the Green’s function
G0(r ,r 8)5exp(ik0ur2r 8u)/4pur2r 8u. Using this Green’s
function and considering a point source atr s, i.e., S(r 8)
5M0d(r 82r s), we can readily show that the scattered wa
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@by definition: the difference between the total photon de
sity waveF(r ) and the background waveF0(r )] is

Fsc~r !5F~r !2F0~r !5E
V
T~r 8!G0~r ,r 8!d3r 8. ~14!

V. IMAGE RECONSTRUCTION ALGORITHM
AND EXPERIMENTAL RESULTS

The scattered wave depends on the heterogeneity f
tion. In practice the scattered wave can be obtained fr
measurements and knowledge of the background wa
Given the scattered wave, how can one obtain the heter
neity function and thusdma(r ) and dms8(r )? The approach
we take here employs the angular spectrum analysis of
scattered wave. In this approach we relate the spatial s
trum of the scattered wave to the spatial spectrum of
heterogeneity function. The analysis involves forward a
inverse Fourier transforms following the conventions giv
in Appendix A.

A. The angular spectrum algorithm

The experiment we consider for the angular spectrum
gorithm has a two-dimensional~2D! planar geometry. As
shown in Fig. 2, the scattered waveFsc(r ) is determined at
a planez5zd from a set of measurements in that plan
Equation~14! tells us that the scattered waveFsc(r ) is the
convolution of the heterogeneity functionT(r ) with the
Green’s functionG0(r ,r 8). In order to reveal the relation
between the scattered wave and the heterogeneity functio
K space, we first expand the Green’s function in terms
plane waves in two dimensions, i.e.,

FIG. 2. Illustration of 2D geometry which we consider for th
image reconstruction algorithm based uponK-space spectrum
analysis. The scattered waveFsc(x,y,zd) ~or its spatial Fourier

componentF̂sc(p,q,zd) is determined at the detection planez
5zd by scanning the detector over a square region. Without los
generality we assume the optical heterogeneities are located b
the detection plane atz5zd . A point source can be placed any
where in the turbid medium. In practice the point source and
detection plane are either on the opposite side of the heterogen
~transmission! or both on the same side of the heterogeneities~re-
emission!. In this figure the point source happens to be placed at
origin of our coordinate system for demonstration of a transmiss
measurement geometry.
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G0~rd ,r 8!

5E
2`

1`E dpdqĜ0~p,q,zd ,z8!e2 i2p[ p(xd2x8)1q(yd2y8)]

5E
2`

1`E dpdq
i

2m
eimuzd2z8ue2 i2p[ p(xd2x8)1q(yd2y8)] ,

~15!

where (p,q) are the 2D spatial frequencies with respect
thex-y coordinates. In the second line of the above equat
we have employed the Weyl expansion of the Green’s fu
tion @21#, i.e.,

Ĝ0~p,q,zd ,z8!5
i

2m
eimuzd2z8u, ~16!

where m5@k0
22(2p)2(p21q2)#1/2 and Im(m).0. The

derivation of the Weyl expansion of the Green’s function
given in Appendix B.

Note that Eq.~15! is theangular spectrumrepresentation
of the Green’s function, a solution of the wave equation w
a point source at (x8,y8,z8). At any point inside the half
space to the right~or left! of the source, there are eigen-pla
waves in thex-y plane whose amplitudes and phases v
with the distance from the sourceuzd2z8u. Because of the
large positive imaginary part ofm, the amplitude decays ex
ponentially versus the perpendicular distanceuzd2z8u away
from the source point. Plane waves with large spatial f
quencies (p,q) ~and therefore a large imaginary part ofm)
will have negligible amplitudes. This is the characteristic d
ference between diffuse photon density waves and ordin
diffractive electromagnetic waves in lossless dielectric m
dia. These plane waves will be scattered by optical inhom
geneities and their resulting amplitudes and phases will c
information about the absorption and/or scattering charac
istics of the inhomogeneities.

If we substitute the angular spectrum representation of
Green’s function@Eq. ~15!# into the volume integral of the
scattered wave given by Eq.~14!, after simple algebraic ma
nipulation and interchanging the order of integrations,
obtain the following representation, known as theangular
spectrumrepresentation of the scattered wave

Fsc~rd!5E E
2`

1`

dpdqe2 i2p(pxd1qyd)

3E dz8Ĝ0~p,q,zd ,z8!T̂~p,q,z8!, ~17!

where T̂(p,q,z8) is the 2D spatial spectrum~Fourier trans-
form! of the heterogeneity function, i.e.,

T̂~p,q,z8!5E E
2`

1`

dx8dy8T~x8,y8,z8!ei2p(px81qy8).

~18!

Taking the 2D Fourier transform of the scattered wa
Fsc(rd) in the detection plane atz5zd , i.e.,
n,
-

y

-

-
ry
-
-

ry
r-

e

e

e

Fsc~rd!5E E
2`

1`

dpdqF̂sc~p,q,zd!e2 i2p(pxd1qyd), ~19!

and comparing Eq.~17! and Eq.~19!, we then obtain the
relation between the spatial spectrum of the scattered w
and the spatial spectrum of the heterogeneity function at
given spatial frequency (p,q), i.e.,

F̂sc~p,q,zd!5E
2`

`

dz8Ĝ0~p,q,zd ,z8!T̂~p,q,z8!. ~20!

Without losing generality, we assume the optical hete
geneities arebelow the detection plane. This assumption e
ables us to remove the absolute value sign in the Weyl
pansion in Eq.~16! since zd2z8.0. We also assume th
heterogeneities are localized between the detection plan
z5zd and a plane atz5z0. Thus we need consider only th
interval between (z5z0, z5zd) for the integral in Eq.~20!.
Dividing the turbid medium between the plane atz5z0 and
the detection plane into slices, we can rewrite Eq.~20! in the
following form of discretized summation

F̂sc~p,q,zd!5(
j 51

N

DzT̂~p,q,zj !Ĝ0~p,q,zd ,zj !

5(
j 51

N
iDz

2m
T̂~p,q,zj !e

im(zd2zj ), ~21!

where in the second line we substitute the Green’s func
Ĝ0(p,q,zd ,zj ) with its Weyl expansion@Eq. ~16!#; Dz is the
discretized step size along thez direction andN is the total
number of slices in thez direction. Ideally the discretization
step sizeDz needs to be as small as possible. In practice
chooseDz to be a few random walk steps~i.e., ;1/ms8).

Equation~21! implies that at any given spatial frequenc
(p,q), the heterogeneity functions at different depthzj ’s can
be thought of as the ‘‘source terms’’ for the scattered wa
The plane waves arising from different slices propag
along the z direction to the detection plane. During th
propagation these plane waves experience different am
tude attenuation and phase shifts which are given
eim(zd2zj )/m, wherem5@k0

22(2p)2(p21q2)#1/2 is a com-
plex number with Im(m).0; the scattered wave detected
the detection planez5zd is thus a sum of plane waves orig
nating from the heterogeneity functions at different dept
In Fig. 3 we illustrate this concept. In this figure we consid
two nonzero heterogeneity functionsT̂1(p,q50,z1) and
T̂2(p,q50,z2) corresponding to plane waves along thex di-
rection in thex-z plane~i.e., y50) with a spatial frequency
p at depthz1 andz2. The perturbations from these two slice
propagate to the detection plane with a phase shift and
plitude attenuation factoreim(zd2zj )/m. At the detection plane
the perturbations from these two slices add up to mak
scattered waveF̂sc(p,q50,zd) at the same spatial frequenc
p.

In K space the propagation of the perturbationT̂(p,q,zj )
at different depthszd2zj is weighted by the amplitude at
tenuation and phase shift given by the Weyl expansion of
Green’s functionĜ0(p,q,zd ,zj )5 ieim(zd2zj )/(2m). Recall
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FIG. 3. The heterogeneity functionsT̂1 andT̂2 with spatial frequencyp from two slices propagate to the detection plane atz5zd where

they add up to make the scattered waveF̂sc in K space at the same spatial frequencyp.
re
ly

n-

-

m5@k0
22(2p)2(p21q2)#1/2 with Im(m).0, therefore the

amplitude and phase of the Weyl expansionĜ0(p,q,zd ,zj )
depend on the spatial frequency (p,q) at a given depthzd
2zj . The amplitude decays more quickly as the spatial f
quencies (p,q) increase, and the Green’s function effective
acts as a low pass filter inK space.
-

For spatial frequencies (p,q) with the range of~0, 1.6!
cm21, we plot the amplitude and phase of the Weyl expa
sion (;eim(zd2zj )/m) in Figs. 4~a! and 4~b! assuming the
depth iszd2zj51 cm. In calculating the background dif
fuse wave wave numberk05@(2vma01 iv)/D0#1/2 we
choose background optical propertiesma050.02 cm21 and
FIG. 4. ~a! and ~b! respectively show the amplitude attenuation and phase shift associated with the Weyl expansion inK space versus
spatial frequencies (p,q). Note in ~a! the z axis is the log of the amplitude ofeim(zd2zj )/m; in ~b! the z axis is the phase ofeim(zd2zj )/m in
degrees.~c! and ~d! show the amplitude attenuation and phase shift versus the depthzd2zj for given spatial frequencies~0.1, 0.1! cm21

~solid lines! and ~0.5, 0.5! cm21 ~dashed lines!.
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ms08 58.0 cm21, and a 140 MHz modulation frequency. Th
resultant wave number isuk0u;1.1 cm21. We find that the
amplitude attenuates by;7 orders of magnitude when th
spatial frequencies (p,q) increase from~0, 0! cm21 to ~1.6,
1.6! cm21. In practice the maximum spatial frequency
determined by the Nyquist sampling frequency, i.e.,qmax
51/2Dx'0.833 cm21 for a scanning step sizeDx
50.6 cm. In Figs. 4~c! and 4~d!, we also plot the amplitude
attenuation and phase shift versus depth for given sp
frequencies, i.e.,~0.1, 0.1! cm21 and ~0.5, 0.5! cm21. The
amplitude attenuates exponentially and the phase shift
creases linearly as we consider the perturbation from de
slices. Again as already shown in Fig. 4~c!, the amplitude
attenuates much faster at spatial frequencies~0.5, 0.5! cm21

than at~0.1, 0.1! cm21. At any given depth (zd2zj ), those
plane waves with sufficiently large spatial frequencies (p,q)
have negligible contribution to the scattered wave, and th
fore carry less information about the inhomogeneities.

B. 2D projection imaging

2D photographic images have been used by radiolog
for many years. In order to acquire 2D photographic-ty
projectionimages, we make a ‘‘thin’’ slice approximation b
replacingzj on the left hand side of Eq.~21! with the esti-
mated slice position of the object. We then drop the s
over allother zj ’s and obtain the following simple relation a
any given spatial frequency (p,q) in K space between th
heterogeneity function at depthz5zob j and the measured
scattered wave at the detection planez5zd :

T̂~p,q,zob j!5
F̂sc~p,q,zd!

DzĜ0~p,q,zd ,zob j!

5
2m

iDz
F̂sc~p,q,zd!e2 im(zd2zob j). ~22!

This ‘‘thin’’ slice approximation may be adequate since w
are often interested in early tumors whose size will be of
order of slice thickness of;0.5 cm, and thus can be con
sidered thin. As we discussed at the end of Sec. V~A!, plane
waves inK space with large spatial frequencies (p,q) are
attenuated quickly as they propagate within the turbid me
The largest detectable spatial frequencies are determine
the sensitivity and signal-to-noise ratio of the detection s
tem.

When the heterogeneity function inK space,T̂(p,q,zob j),
is determined by Eq.~22!, we can then take the invers
2D Fourier transform ofT̂(p,q,zob j) to obtain the tumor
function T(x,y,zob j) in the real x-y space at the depth
of the heterogeneityz5zob j . We derive a 2D photo-
graphic image of the optical properties using Eqs.~10!
and ~11!; for example, dma(x,y,zob j)5Tabs(x,y,zob j)/
@2v/D0F0(x,y,zob j)# for absorbing objects, and
dms8(x,y,zob j)5Tsc(x,y,zob j)/@3D0k0

2/vF0(x,y,zob j)# for
scattering objects. Note that for a purely absorbing or s
tering object, either a frequency domain~modulation fre-
quencyf Þ0) or a continuous-wave~CW, f 50) DPDW can
be employed to extract the absorption or scattering variat
but for objects having both absorption and scattering va
ial

n-
er

e-

ts
e

e

a.
by
-

t-

n;
-

tions, a CW DPDW is not sufficient to separate the abso
tion and scattering@see Sec. VI~A!#.

Consider next a case where the optical heterogeneities
located within a ‘‘thin’’ slice atz5zob j ~see Fig. 5!. If the
slice thicknessDz is less than a few transport mean fre
path-lengths @1/(ms08 1ma0)#, the heterogeneity function
within this thin slice is approximately uniform, therefore E
~22! provides a quite accurate relation between the hetero
neity function and the scattered wave inK space, and optica
properties of the heterogeneity can further be deduced q
accurately. For thicker objects~i.e., thickness.4 mm), the
average over the size of the object weighted by the sum
exponential amplitude and phase factorseim(zd2zj )/m pro-
vides only an approximate relation between the heteroge
ity function and the scattered wave. However we find that
relative optical properties of multiple objects can still be r
constructed with an reasonable accuracy.

Obviously the image reconstruction involves only 2D fo
ward and inverse Fourier transforms, and no iterat
schemes are needed; therefore this angular spectrum
rithm is very rapid.

C. A priori depth information and perspectives of 3D imaging

From the derivation we notice that in principle, th
K-space spectrum analysis algorithm should work well wh
the optical heterogeneities are confined within a thin sli
The reconstruction then provides a 2D photographic pro
tion image of the optical properties givena priori informa-
tion about the depth of the heterogeneity. Since the het
geneity function ~therefore the optical properties of th
heterogeneities! is related to the scattered wave via the We
expansion of the Green’s function, and since the amplitu
and phase of the Weyl expansion depend upon the deptzd
2zj , an incorrect depth estimate produces incorrect val
of the reconstructed optical properties. This type of error
intrinsic to the angular spectrum approach. However, rou
estimation of the depth information can be tolerated if it
desirable to reconstruct contrast images of multiple objec

Equation~22! reveals how the heterogeneity function a
hence the reconstructed optical properties of the heterog
ities vary with the estimated depth. Choice of a too sm
depth underestimates the optical properties and a too l
depth overestimates the optical properties. Figure 6~a! shows

FIG. 5. The heterogeneities are considered to be thin, wh
locate within a thin slice atz5zob j in parallel to the detection plane
The heterogeneity function within this thin slice is approximate
uniform and the heterogeneity function is zero elsewhere.
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the reconstructed absorption coefficient of a spherical ob
versus the estimated depthzd2zob j . In this case, we have
spherical object of 0.5 cm radius 2 cm below the detect
plane, i.e.,zd2zob j52 cm. The true optical property varia
tions of the spheres with respect to the background
dma50.02 cm21 and dms850. We find that the recon
structed absorption increases as the estimated object d
increases. In Fig. 6~b!, we plot the ratio of the reconstructe
absorption coefficients of two spherical absorbing obje
(dma1

rec/dma2
rec) versus the estimated depth. One sphere

dma150.04 cm21 anddms18 50 cm21 is at~2, 1, 3! cm and
the other sphere ofdma250.02 cm21 and dms28 50 cm21

is at ~1,21, 3! cm. Two spheres have the same size~0.5 cm
in radius! and they are chosen to to be at the same de
e.g., 2 cm below the detection plane. Therefore any de
estimate is either correct or incorrect for both objects at
same time, and we do not have to take into account
additional complexity shown in Fig. 6~a!. We find that the
ratio of the reconstructed absorption coefficients is not s
sitive to the depth estimation, and therefore the incorr

FIG. 6. ~a! shows the reconstructed absorption coefficient ver
the depth estimation. The data points in~a! are normalized by the
absorption reconstructed at the depth where the object is, e.gzd

2zob j52 cm. ~b! shows the ratio of reconstructed absorption
two spherical objects versus the depth estimation. Although
ratio is only approximately reconstructed~e.g., the true ratio is 2!,
the ratio is relatively insensitive to the depth estimate.
ct

n

re

pth

s
f

h,
th
e
e
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ct

depth estimate for contrast image can be tolerated in
case.

The image quality is also affected by the choice ofa
priori depth. Recall the heterogeneity function and the sc
tered wave inK space is coupled to each other via the We
expansion@see Eq.~22!#. The factor e2 im(zd2zob j)/m in-
creases exponentially with the (zd2zob j). The noise~nu-
merical and experimental! can be amplified at greater depth
(zd2zob j). A series of reconstructed images with differe
depths are shown in Fig. 7. In this example an absorb
spherical object is at~2, 1, 3! cm and the scattered wave
measured in the plane atz55 cm over a 939 cm2 square
with steps of 0.6 cm. The images~b!–~f! are reconstructed
with assumptions of the depth (zd2zob j) to be respectively
4, 3, 2, 1, 0 cm. We find that the image quality gets wo
~e.g., noisier! at greater depths. The depth-dependent no
and themonotonicvariation of the image sharpness make
difficult to estimate the true object depth from image sha
ness. For a spatially extended object, however, a choice
shallow depth is often sufficient to reconstruct fairly well th
spatial margins of inhomogeneities.

In order to obtain better 3D information with this diffrac
tion tomography technique, one can use a secondary lo
ization scheme to deduce the object depth. An exam
would be to scan the phased-array in two orthogonal pla
@22,23#. Alternatively as shown in Fig. 8, if we take tw
planar measurements along two different directions of
same sample, the projection image 1 from the first meas
ment in one plane~plane 1! will provide the depth informa-
tion for the projection image 2 from the second measurem
in the other plane~plane 2!.

D. Experimental results

To demonstrate the experimental feasibility of this alg
rithm, we have performed amplitude and phase meas
ments in a parallel-plane geometry~Fig. 2! within a tank
filled with 50 liters 0.75% Intralipid (ma050.020 cm21,
ms08 57.3 cm21). We used a rapid homodyne detection sy

s

f
e

th

FIG. 7. Illustration of the dependence of reconstructed images on the estimated depth. The detection plane is atz55 cm and an

absorbing object shown in~a! is at ~2, 1, 3! cm, which is 2 cm below the detection plane.~b! through~f! are the images reconstructed wi
an estimated depth at, respectively, 4 cm, 3 cm, 2 cm, 1 cm, and 0 cm.
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tem based upon in-phase/quadrature~IQ! demodulation tech-
niques@20,24#. A block diagram and details of the exper
mental setup are given in reference@20#.

The experimental geometry is shown in Fig. 2. The sou
position was fixed and taken to be the origin of our coor
nate system. As shown in Fig. 2, we ‘‘made’’ the detecti
plane by scanning a single detection fiber over a square
gion from ~24.65,24.65, 5.0! cm to ~4.65, 4.65, 5.0! cm in
a plane atzd55.0 cm in steps of sizeDx5Dy50.3 cm.
The amplitude and phase of the DPDW was recorded at e
position for a total of 1024 points. Each data point tak
about half second. We directly measured the amplitude
phase in thehomogeneousmedium to obtain the backgroun
waveF0(r d).

In this experiment, an absorbing slice with dimensio
1.531.530.4 cm3 was submerged in the turbid mediu
~0.75% Intralipid! at position (21.6, 20.3, 3.0! cm. The
slice was made of resin plus TiO2 and absorbing dye. TiO2
particles~from Sigma! cause the scattering and the absorb
dye~900NP from Zeneca! causes the absorption. The abso
tion coefficient of the slice wasma,ob j50.12 cm21; its scat-
tering coefficient was about the same as that of the ba
ground, i.e.,;7.3 cm21. The scattered waveFsc(r d) was
obtained by subtracting the background waveF0(r d) from
the measured~total! signalF(r d).

FIG. 8. Illustration of how to obtain a 3D image from two pro
jection images reconstructed from two measurements along two
thogonal directions. Image 1 from the measurement in plane 1
vides the depth information for image 2 from the measuremen
plane 2.
e
-

e-

ch
s
d
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g
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For image reconstruction, we first take the 2D Four
transform of the scattered waveFsc(r d) measured at the de
tection planez5zd . Using Eq.~22! along witha priori in-
formation about the slice depth, we then obtain the hete

geneity function in K space T̂(p,q,zob j) in the plane
containing the slice atz5zob j . During this step, an ‘‘m-cut’’
filter is used to neglect high spatial frequency compone
with Im(m).3.5 Im(k0) in the heterogeneity function
T̂(p,q,zob j) @25#. We then take 2D inverse Fourier transfor
of T̂(p,q,zob j) with respect to spatial frequency (p,q) to
obtain the heterogeneity functionT(x,y,zob j) in real space.
Finally we divide the heterogeneity functionT(x,y,zob j) by
the background fieldF0(x,y,zob j) in the plane containing
the slice atz5zob j to obtain a spatial map of the recon
structed absorption variation, e.g.,dma(x,y,zob j)
5Tabs(x,y,zob j)/@2v/D0F0(x,y,zob j)#. The homogeneous
background fieldF0(x,y,zob j) is calculated using the bes
estimated optical properties (ma050.017 cm21 and ms08
57.21 cm21) by fitting the background waveF0(r d) mea-
sured in the detection planez5zd to the exact solution of
DPDW’s @e.g., F0(r )5vM0 exp(ik0ur2r su)/4pD0ur2r su].
The reconstructed images of the slice are shown in Fig
The complete reconstruction based upon forward and inv
FFT calculations takes less than 0.2 second CPU time on
Sparc10 workstation. The reconstructedx-y position was
about at~21.80,20.25! cm, close to the truex-y position at
~21.6, 20.3! cm. Inaccuracies in the position measureme
might account for the discrepancy. The reconstructed abs
tion coefficient is well above the background noise level a
close to the true value, e.g.,dma,ob j

rec 50.12560.018 cm21.
The uncertainty corresponds to 1 mm uncertainty in the s
depth estimation. Errors in our estimate of background o
cal properties, the refractive index mismatch between
object (;1.46) and background medium (;1.33) and our
inability to detect high spatial frequency components in
scattered wave also contribute to the inaccuracy in rec
structed absorption properties.

VI. SIMULTANEOUS RECONSTRUCTION
OF ABSORPTION AND SCATTERING,

AND EXTRACTION OF BACKGROUND
OPTICAL PROPERTIES

The angular spectrum algorithm provides an approxim
relation between the heterogeneity function and the scatt

r-
o-
in
tion
n the
FIG. 9. ~a! shows the exactx-y position of a thin absorbing slice.~b! shows the surface plot of the reconstructed absorption varia
(dma

rec) using the angular spectrum algorithm.~c! illustrates the reconstructed 2D photographic image of this slice. Agreement betwee
reconstructed position and the exact position as shown in~a! can be readily found.
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wave within the framework of the first order Born approx
mation. In addition to this first order approximation, it al
requires knowledge of the background optical propert
The resultant images are 2D photographic-type images
this section, we consider the possibility of simultaneous
construction of the absorption and scattering coefficie
and we explore methods to extract the background opt
properties from a single measurement on a heterogen
sample.

A. Absorption and scattering

So far, we have assumed that we have either purely
sorbing inhomogeneities or purely scattering inhomoge
ities, but not a mixture. We introduce a dual modulati
frequency approach as a means to reconstruct the absor
and scattering coefficients simultaneously.

When both absorption and scattering variations
present, the heterogeneity function is

T~r !52
v

D0
F0~r !dma~r !1

3D0k0
2

v
F0~r !dms8~r !. ~23!

Within a ‘‘thin’’ slice approximation, the heterogeneity func
tion T(r ) in the plane atz5zob j can be obtained using th
angular spectrum algorithm. DividingT(r ) by the back-
ground waveF0(r ) in the plane atz5zob j , we obtain the
following quantity, denoted byF(v), which is a function of
dma , dms8 , as well as the modulation frequencyv, i.e.,

F~v!5
T~r !

F0~r !
U

zob j

523ms08 dma~r !

1F23ma01 i
3v

v Gdms8~r !. ~24!

Note that the scattering variationdms8 appears along with the
modulation frequency, whiledma does not. Therefore, if we
measure the scattered wave at two different modulation
quenciesv1 andv2, the difference between the two the r
constructedF(v1) andF(v2) will only be related todms8 :

F~v2!2F~v1!5 i
3~w22v1!

v
dms8 . ~25!

dms8 can be determined from Eq.~25!. Then by substituting
the resultantdms8 into Eq. ~24!, we can then determine th
absorption variationdma .

To demonstrate the feasibility of this approach, we sim
taneously reconstruct the absorption and scattering co
cients of a generic slice using simulated data. The simula
geometry is similar to the experimental geometry shown
Fig. 2. A 13130.3 cm3 slice of ma50.04 cm21 and ms8
512.0 cm21 is placed at (1,21,3) cm. The source is a
(0,0,0) cm and the homogeneous background has op
properties ofma050.02 cm21 and ms08 58.0 cm21. Note
that the slice has both absorption and scattering variat
with respect to the homogeneous background. The total
background diffuse photon density waves atzd55 cm are
calculated forf 570 MHz andf 5140 MHz using the finite
difference method. The reconstructed images are show
s.
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Figs. 10~b! and 10~c!. The reconstructed absorption and sc
tering coefficients are dma50.025 cm21 and dms8
53.32 cm21. We find that this approach provides simult
neous estimates of the absorption and scattering coeffici
with a reasonable accuracy.

B. Extraction of background optical properties

Image reconstruction requires knowledge of the opti
properties of the homogeneous background medium. For
ample, the complex spatial frequencym5@k0

22(2p)2(p2

1q2)#1/2 in Eq. ~22! depends on the background photon de
sity wave numberk0, andk0 in turn depends upon the ab
sorption and scattering coefficients of the background tur
medium. It is derivable to determine the background opti
properties from a single data set measured on a heter
neous medium. One simple approach is to fit the hetero
neous data set with a homogeneous model and thus esti
the average values of the bulk optical properties. We fi
that the results by this approach are generally unsatisfact
Figure 11~b! shows the total photon density waveF(r ) ~the
amplitude, for example! from the absorbing slice experimen
where the detector was scanned along a line symmetric
with respect to the source. When fitting all the data poi
with a simple homogeneous model, the resultant absorp
and scattering coefficients arema0

f i t50.012 cm21 and ms08
f i t

56.27 cm21, while the expected values for 0.75% Intralip
arema050.020 cm21 andms08 57.30 cm21.

We can improve the results by considering the symme
of our detection scheme. Our scanning geometry~see Fig. 2!
is mirror symmetric with respect to the source. In Fig. 11~a!,
we project the 3D geometry into 2D to re-emphasize t
mirror symmetry. If the medium is homogeneous, the d
should be symmetric with respect to source; if the medium
heterogeneous, the left-right symmetry will be broken. T
broken symmetry enables us to identify the data points
are substantially perturbed by the inhomogeneities. Since
phase of diffuse photon density waves is not as sensitiv
the absorption variation as the amplitude, we use only
amplitudes of the photon density waves for identifying t
most perturbed data points. If the left-right difference in a
plitude signals is greater than the system noise level, we

FIG. 10. ~a! shows a thin slice object at~1, 21, 3! cm. The slice
is 0.3 cm thick with its 131 cm2 surface in parallel to the detec
tion plane atzd55 cm. The scattered waves at two modulati
frequencies~70 MHz and 140 MHz! in the detection plane atzd

55 cm are calculated using finite difference method over a
39.3 cm2 region with x-y steps of 0.3 cm.~b! and ~c! show the
absorption and scattering images reconstructed simultaneousl
ing the dual modulation frequency approach. The reconstructed
sition of the slice is close to its true position and the reconstruc
absorption and scattering properties are close to their true va
See Sec. VI A for details.
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those data points the most perturbed data points@See Fig.
11~c!#. We then exclude these perturbed data points, an
the rest of data points~both amplitude and phase! to a ho-
mogeneous model@see Fig. 11~d!#. We find that resultant
optical properties are indeed improved, e.g.,ma0

f i t

50.015 cm21 and ms08
f i t57.23 cm21. The inaccuracy de-

creases from;40% to ;25% in ma0 and from;18% to
;2% in ms08 . This symmetry technique is similar to th
phased-array technique in detection heterogeneities@23#. Al-
though biological tissue is in general microscopically inh
mogeneous, we speculate that this symmetry techn
might work to a certain degrees for tissues with rather
mogeneous macrostructures such as breast tissue. Furth
perimental investigations would be required to test the ap
cability of this technique toin vivo studies.

VII. SLAB AND SEMI-INFINITE GEOMETRIES

The total photon density waveF(r ) for a turbid medium
with boundarieswas given by Eq.~13!. On the surface of the
turbid medium, the diffuse photon density wave satisfies
zero partial currentboundary condition@26#

F~r !1
11Re f f

12Re f f

2D0

v
]F~r !

]n8
50→ ]F~r !

]n8
52aF~r !,

for r on the surface. ~26!

FIG. 11. ~a! shows a 2D version of the experimental geome
in Fig. 2. The detector scans along a line from left to right sy
metrically with respect to the source.~b! shows the raw data mea
sured on a heterogeneous medium by scanning the detector al
line from left to right.~c! shows the most perturbed data points f
which the left and right differences are greater than the noise l
of our detection system~e.g., 2.5 mV in this case!. ~d! show the rest
data points after the most perturbed data points are filtered out.
background optical properties can then be obtained by fitting
data points shown in~d! to a homogeneous model.
fit

-
ue
-
ex-
i-

e

Here n8 is the surface normal pointing outward from th
scattering medium,a5@(12Re f f)/(11Re f f)#v/2D0 where
Re f f is the effective reflection coefficient.2 Using this zero
partial current boundary condition in Eq.~13!, we obtain a
general solution for the total diffuse photon density wa
F(r ) in a finite turbid medium:

F~r !5
v

D0
E

V
S~r 8!G~r ,r 8!d3r 81E

V
T~r 8!G~r ,r 8!d3r 8

2E
S
F~r 8!FaG~r ,r 8!1

]G~r ,r 8!

]n8
GdA8. ~27!

How is the scattered wave related to the heterogen
function in this case? As we discussed at the end of Sec.
the surface term depends on the total photon density w
F(r ), and therefore the surface term includes both a ba
ground wave component and a scattered wave compon
Analytic separation of the background wave component fr
the scattered wave component in the surface term is ge
ally not feasible though perturbative approaches may be u
approximately.

The approach we take here is to find an appropri
Green’s function so that the surface term is zero by requir

aG~r ,r 8!1
]G~r ,r 8!

]n8
50, r is on the surface.~28!

Note that this boundary condition, as we discussed in S
III, is naturally satisfied for an infinite turbid medium. B
requiring the Green’s function to satisfy Eq.~28!, we then
have the total photon density waveF(r ):

F~r !5
v

D0
E

V
S~r 8!G~r ,r 8!d3r 81E

V
T~r 8!G~r ,r 8!d3r 8,

~29!

from which we can obtain the scattered waveFsc(r )

Fsc~r !5F~r !2F0~r !5E
V
T~r 8!G~r ,r 8!d3r 8. ~30!

Our task is to find the appropriate Green’s function whi
satisfies Eq.~12! and the boundary condition given by Eq
~28!. We expect the Green’s function for a finite medium
include the Green’s function in an infinite mediumG0(r ,r 8),
and an additional termGh(r ,r 8) which results from backre-
flections at the boundaries, i.e.,

G~r ,r 8!5G0~r ,r 8!1Gh~r ,r 8!, ~31!

2The exact expression ofRe f f was derived by Haskell, Tromberg
and their co-workers@26#. An approximate expression offered b
Groenhuis and co-workers@27#, is in agreement with the exactRe f f

within 10%. The approximate expression isRe f f521.440n22

10.710n2110.66810.0636n where the relative index of refraction
n5nin,turbid /nout,air .
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whereG0(r ,r 8)5exp(ik0ur2r 8u)/4pur2r 8u. Gh(r ,r 8) is re-
quired to satisfy the homogeneous Helmholtz equation

~¹21k0
2!Gh~r ,r 8!50, ~32!

and the following boundary condition:

aGh~r ,r 8!1
]Gh~r ,r 8!

]n8
52FaG0~r ,r 8!1

]G0~r ,r 8!

]n8
G ,

for r on the boundaries. ~33!

A. Slab geometry

Boundaries of arbitrary shapes are, in general, difficul
incorporate into the solution of the photon diffusion equat
@Eq. ~13!#. Here, we consider a slab geometry shown in F
12. Within the slab is the scattering medium and outside
slab is air. This slab geometry is to approximate the co
pressed breast configuration, which is suitable for clini
breast lesion diagnosis.

Suppose the two surfaces of a slab turbid medium ar
z5z0 and z5zd as shown in Fig. 12. Again we use th
angular spectrum representation of the Green’s func
Gh(r ,r 8), i.e.,

Gh~r ,r 8!5E E dpdqĜh~p,q,z,z8!e2 i2p[ p(x2x8)1q(y2y8)] ,

~34!

Substituting this equation in Eq.~32!, we find for any given
spatial frequencies (p,q), Ĝh(p,q,z,z8) satisfies the follow-
ing one-dimensional homogeneous Helmholtz equation:

F ]2

]2z
1m2G Ĝh~p,q,z,z8!50, ~35!

where m5@k0
22(2p)2(p21q2)#1/2 and Im(m).0. The

boundary conditions given by Eq.~33! for a slab geometry
shown in Fig. 12 can be rewritten for the angular spectr
Ĝh(p,q,z,z8) as

FIG. 12. A slab geometry is considered for the boundary pr
lem. The slab is infinite long but has a finite thickness, e.g.,zd

2z0. One surface of the slab is at planez5z0 and another surface
is at planez5zd . The turbid medium is between these two plan
and outside the slab is nonscattering media such as air. This
geometry is quite suitable for a compressed breast configuratio
clinical studies.
o

.
e
-
l

at

n

aĜh~p,q,z,z85z0!2
]Ĝh~p,q,z,z85z0!

]z8

52~a1 im!Ĝ0~p,q,z,z85z0!, ~36!

aĜh~p,q,z,z85zd!1
]Ĝh~p,q,z,z85zd!

]z8

52~a1 im!Ĝ0~p,q,z,z85zd!, ~37!

whereĜ0(p,q,z,z8)5( i /2m)eimuz2z8u is given by the Weyl
expansion@see Eq.~16!#.

The general solution ofĜh(p,q,z,z8) has the form of

Ĝh~p,q,z,z8!5Aeimz81Be2 imz8. ~38!

The first term represents the wave which is reflected by
lower surface atz5z0 and then propagatesforward along
1z direction, i.e., the ‘‘transmission’’ component; the se
ond term represents the wave which is reflected by theupper
surface atz5zd and then propagatesbackwardalong 2z
direction, i.e., the ‘‘reflection’’ component. CoefficientsA
and B can then be solved using the boundary conditio
given by Eqs.~36! and~37!. After some algebra, we find tha

A5 f 1eimz1 f 2e2 imz, B5 f 3eimz1 f 4e2 imz, ~39!

where f 1 , f 2 , f 3 , and f 4 are given by

f 15
f 0

b
~a21m2!e2 im(zd1z0),

f 252
f 0

b
~a1 im!2eim(zd2z0), ~40!

f 352
f 0

b
~a1 im!2eim(zd2z0), f 45

f 0

b
~a21m2!eim(zd1z0),

~41!

with

f 05
i

2m
, b5~a1 im!2eim(zd2z0)2~a2 im!2e2 im(zd2z0).

~42!

Finally, for a slab geometry, the Fourier component
total Green’s functionĜ(p,q,z,z8) in K space is

Ĝ~p,q,z,z8!5Ĝ0~p,q,z,z8!1Ĝh~p,q,z,z8!

5 f 0eimuz2z8u1 f 1eim(z1z8)1 f 2e2 im(z2z8)

1 f 3eim(z2z8)1 f 4e2 im(z1z8). ~43!

Using Ĝ(p,q,z,z8), the relation between the scattere
wave F̂sc(p,q,zd) and the heterogeneity functio
T̂(p,q,zob j) for a slab geometry within ‘‘thin’’ slice approxi-
mation is
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T̂~p,q,zob j!'
F̂sc~p,q,zd!

DzĜ~p,q,zob j!
. ~44!

The 2D inverse Fourier transform ofT̂(p,q,zob j) gives the
heterogeneity functionT(x,y,zob j) in real x-y space. The
optical properties of the inhomogeneities can then be
tained, e.g., for absorbing objects, we havedma(x,y,zob j)
5Tabs(x,y,zob j)/@2v/D0F0

slab(x,y,zob j)#; and for scatter-
ing objects, we have dms8(x,y,zob j)5Tsc(x,y,zob j)/
@3D0k0

2/vF0
slab(x,y,zob j)#.

Using the appropriate Green’s function@Eq. ~43!# for a
slab geometry, we reconstructed a 2D optical image o
slice embedded in a slab turbid medium. The slab geom
is shown in Fig. 12 where the two surfaces are at planez
50 andz55 cm, respectively. The source is at the orig
A 1.031.0 cm2 slice of 0.3 cm thick is at~1,21,3! cm @see
Fig. 13~a!# and the detection plane is at the top surface of
slab (z55 cm). The slice has a higher absorption coe
cient than the background medium but shares the same
tering coefficient with the background, e.g.,maob j

50.04 cm21 and msob j8 58.0 cm21 for the slice andma0

50.02 cm21 and ms08 58.0 cm21 for the background. The
total and background diffuse photon density waves at the
surfacez55 cm are calculated using the finite differen
method.

The reconstructed absorption image using the approp
Green’s function@Eq. ~43!# for the slab geometry is shown i
Fig. 13~b!, and the reconstructed absorption isdma,slab

rec

50.0240 cm21, which is close to the expected valuedma
th

50.0200 cm21. For comparison, we also reconstructed t
image of the slice using thewrongGreen’s function, i.e., the
Green’sG0(r ,r 8), which is only correct for the infinite me
dium @Eq. ~16!#. The resultant absorption image is shown
Fig. 13~c!. We found that the position of the slice can be w
reconstructed by using different Green’s functions. Howe
the image shown in Fig. 13~c!, which is reconstructed by
using thewrong infinite Green’s function, has more artifac
than that shown in Fig. 13~b!, which is reconstructed by
using theright slab Green’s function. Notice that the Green
function for a slab geometryuĜ(p,q,z,z8)u is smaller than
the Green’s function for an infinite geometryuĜ0(p,q,z,z8)u

FIG. 13. ~a! shows the position of a 0.3 cm thick, 1.
31.0 cm2 absorbing slice at~1, 21, 3! cm in a slab turbid medium
The two surfaces of the slab are respectively at planesz50 cm
andz55 cm. The source is at origin at one of the slab surfacez
50 cm) and the detector scans at the other surface (z55 cm).
The reconstructed absorption image using the ‘‘slab’’ Green’s fu
tion @Eq. ~43!# is shown in~b!. The reconstructed absorption imag
using thewrong ‘‘infinite’’ Green’s function @Eq. ~16!# is shown in
~c!.
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simply because we lose photons through the finite bou
aries. When we use the Green’s function of an infinite m
dium to reconstruct the image for a slab geometry, the ov
estimate of the Green’s function is responsible for the no
image structures~artifacts! in Fig. 13~c!. The overestimated
infinite Green’s function also results in smaller reconstruc
optical properties, e.g., the reconstructed value by using
wrong infinite Green’s function,dma,wrong

rec 50.0056 cm21,
is about 4 times as small as the valuedma,slab

rec

50.0240 cm21 reconstructed by using the appropriate sl
Green’s function. We see that the appropriate Green’s fu
tion for a slab geometry@Eq. ~43!# produces cleaner image
and more accurate optical properties than the Green’s fu
tion which is only suitable for an infinite medium@Eq. ~16!#.

B. Semi-infinite geometry

As an extension of the above derivation, we can ea
obtain the Fourier component of the total Green’s funct
Ĝsemi(p,q,z,z8) for a semi-infiniteturbid medium. Alterna-
tively we can start with the Green’s function for a slab g
ometry@Eq. ~43!#, then move the lower boundary of the sla
in Fig. 12 to the negative infinity, i.e.,z0→2`. Note that
Im(m).0 and therefore all terms in Eq.~43! with e2 imz0

vanish whenz0→2`. The Fourier component of the tota
Green’s functionĜsemi(p,q,z,z8) for a semi-infinitemedium
at any spatial frequencies (p,q) in K space is thus

Ĝsemi~p,q,z,z8!5 f 0eimuz2z8u1 f 4
semie2 im(z1z8). ~45!

Here, the coefficientsf 0 and f 4
semi are given by

f 05
i

2m
, f 4

semi52 f 0

a1 im

a2 im
e2imzd. ~46!

The first term on the right hand side of Eq.~45! represents
the Green’s function in an infinite medium, and the seco
term represents the wave, which is reflected by the bound
at z5zd and propagates backward along the negativez direc-
tion. For arbitrary boundaries the solution of the Gree
function are in general difficult to obtain.

C. Re-emission geometry

In the preceding discussions the source and the dete
were assumed to be on the opposite sides of the inhom
neity. This configuration is called transmission@see Fig.
14~a!#. It is suitable for two-plate soft compression geome
in breast cancer studies, with the source placed on one p
and the detector scanned over the other plate. Interestin
the derivation is not limited to this transmission configur
tion. Recall that dependence of the angular spectrum a
rithm on the source position is implied in the heterogene
function @see Eqs.~10! and ~11!#. The relation between the
heterogeneity function and the scattered wave measure
the detection plane@see Eq.~22!# does not explicitly depend
on the source position. The light source and the detector
be placed on the same side or on the opposite sides o
object without affecting the conclusion of the above deriv
tion. Hence, we can apply the algorithm equally well to a
other geometry–the re-emission geometry@see Fig. 14~b!#

-
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FIG. 14. ~a! shows the transmission geometry. The source is at the origin and the detector scans in a plane atz5zd . ~b! shows the
re-emission geometry where the source is at the center of the detection plane atz5zd . ~c! illustrates a spherical absorbing object at~2, 1,
2! cm embedded within a slab turbid medium. The two surfaces of the slab are atz050 cm andzd54.0 cm, respectively. For both
transmission and re-emission geometries, the scattered waves in the detection plane atzd54 cm are calculated using the exact DPD
solution for a slab geometry over a 939 cm2 region with x-y steps of 0.6 cm. The reconstructed images for the re-emission
transmission geometries are shown in~d! and~e!, respectively. The two images look similar. We also found that the reconstructed abso
coefficients are also about the same under both geometries.
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@28,29#. In the re-emission configuration, the detector sc
in the plane which contains the source. This could be ne
sary, for example, in brain function studies. The re-emiss
geometry could also be useful for studies of large de
breast tissues in which fewer photons pass through the tis

In the transmission geometry, we measure the scatt
wave propagatingforward away from the source; in the re
emission geometry, we measure the scattered wave prop
ing backwardtowards the source. For a re-emission geo
etry and within a thin slice approximation, the relation of t
heterogeneity functionT̂(p,q,zob j) in K space with the mea
sured scattered wave in the planez5zd is given by the same
equation as for the transmission geometry@Eq. ~22!#. Here,
we rewrite the relation for the re-emission geometry:

T̂~p,q,zob j!5
F̂sc~p,q,zd!

DzĜ~p,q,zd ,zob j!
, ~47!

where an appropriate Green’s function for an infinite m
dium @Eq. ~16!# or a slab medium@Eq. ~43!# has been as
sumed.

Simulations have shown the applicability of the algorith
to the re-emission geometry. Consider an absorbing sphe
inhomogeneity of 0.5 cm radius at~2, 1, 2! cm embedded in
an otherwise homogeneous slab turbid medium@see Fig.
14~c!#. The two surfaces of the slab are atz050 cm and
zd54.0 cm, respectively. The absorption and scattering
efficients of the sphere arema50.04 cm21 and ms8
58.0 cm21 while the background optical properties a
ma050.02 cm21 and ms08 58.0 cm21. For the re-emission
s
s-
n
e

ue.
ed

at-
-
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al

-

configuration, both the source and detector are placed on
top surface of the slab, i.e., in a plane atzd54 cm. The
scattered wave is calculated over a 939 cm2 region with
x-y steps of 0.6 cm. The source is placed at the center of
square scanning region in the detection plane, i.e., at~0, 0, 4!
cm. The reconstructed image for the re-emission geometr
shown in Fig. 14~d!. For comparison we also reconstruct th
image of the same object for the transmission geometry
this case the source is at the origin~0, 0, 0! cm, on the lower
surface of the slab, with all other configurations kept t
same as in the re-emission geometry. The image is show
Fig. 14~e!. We see that the image quality in these two co
figurations is about the same. The ratio of the reconstruc
absorption coefficient for the re-emission geometry to t
for the transmission geometry isdma,re2em

rec /dma,trans
rec ;1.1.

The finite object size~as opposed to a ‘‘thin’’ slice! might
contribute to the small difference in the reconstructed
sorption.

VIII. SUMMARY

We have presented a full exposition of our recent wo
that employs the angular spectrum algorithm for optical d
fraction tomography with diffuse photon density waves. T
image reconstruction becomes practically easy for thin h
erogeneities wherein the heterogeneity function of interes
proportional to the scattered wave measured at the detec
plane, i.e.,T̂(p,q,zob j)}Fsc(p,q,zd). We have shown tha
although this relation is accurate only for thin inhomogen
ities, it provides an approximate short cut for fast, 2D p
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jection imaging of spatially extended objects. The reco
struction is very rapid, requiring only a forward and inver
Fourier transform, e.g., it takes less than 0.2 second o
Sparc10 workstation to reconstruct an image of;1000 pix-
els. For spatially extended objects, although the rec
structed optical properties are not accurate, the ratio of
reconstructed optical properties of multiple objects are cl
to the true ratio. In this sense we say thatcontrastimage can
still be obtained by using this algorithm. The feasibility f
using this algorithm for image reconstruction of absorb
and scattering inhomogeneities has been experimen
demonstrated@20#. We have also shown that the absorpti
and scattering properties can be reconstructed simu
neously using the angular spectrum algorithm with scatte
wave measured at two different modulation frequencies.
thors perceive that the angular spectrum algorithm could
tentially apply for breast cancer imaging given that bound
matching is employed to reduce the boundary effect@30#.
The method could also be used for differential imaging
the preferential accumulation of an exogenous contrast a
in biological tissues@31#.

We have extended the theory to other geometries inc
ing the slab and the semi-infinite geometry for both transm
sion and re-emission configuration. The theory was c
firmed in simulation experiments.
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APPENDIX A: CONVENTIONS USED IN THIS PAPER
REGARDING FOURIER TRANSFORM

The conventions regarding the forward and inverse F
rier transforms are as follows. Consider a functionf (x) in
one dimension:

Forward Fourier transform:

F~p!5E f ~x!ei2pxpdx; ~A1!

Inverse Fourier transform:

f ~x!5E F~q!e2 i2pxpdp; ~A2!

and thed function is therefore given by

d~p!5E ei2pxpdx, d~x!5E e2 i2ppxdp. ~A3!

Using these conventions, we eliminate the 2p factor outside
the integral of forward and inverse Fourier transforms.
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APPENDIX B: THE WEYL EXPANSION OF GREEN’S
FUNCTION

Consider an infinite turbid medium.ma0 and ms08 are re-
spectively the absorption and scattering coefficients. T
Green’s functionG0(r ,r 8) satisfies the following equation:

~¹21k0
2!G0~r ,r 8!52d~r ,r 8!, ~B1!

where k05@(2vma01 iv)/D0#1/2 with Im(k0).0; D0

5v/(3ms08 ) is the photon diffusion coefficient. The solutio
of the Green’s function is@32#

G0~r ,r 8!5
eik0ur2r8u

4pur2r 8u
. ~B2!

The Green’s function is related to its Fourier transform

G0~r !5E E E Ĝ0~p,q,n!e2 i2p(px1qy1nz)dp dq dn,

~B3!

where we assumer 850 without losing generality and
(p,q,n) are the spatial frequencies. Plugging Eq.~B3! into
Eq. ~B2! and using the integral expression for thed function
@Eq. ~A3!#, we have

E E E Ĝ0~p,q,n!@k0
22~2p!2~p21q21n2!#

3e2 i2p(px1qy1nz)dp dq dn

52E E E e2 i2p(px1qy1nz)dp dq dn. ~B4!

Without a rigorous proof, we can obtain the Fourier tran
form of the Green’s function just by looking at both sides
the above equation, i.e.,

Ĝ0~p,q,n!5
1

~2p!2~p21q21n2!2k0
2

5
1

~2p!2n22m2
,

~B5!

wherem5@k0
22(2p)2(p21q2)#1/2 and Im(m).0. Eq.~B3!

can then written as

G0~r !5E E dp dq e2 i2p(px1qy)E e2 i2pnz

~2p!2n22m2
dn,

~B6!

FIG. 15. There are two poles for the integral overn in Eq. ~B6!.
~a!: for z.0 the singularity is atn52m/2p and the integral is
done along the lower close curve;~b!: for z,0 the singularity is at
n5m/2p and the integral is done along the upper close curve.
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The integral over spatial frequencyn can first be done by
‘‘pole’’ structure analysis. There are two poles in the integ
over n as shown in Fig. 15. Forz.0, we require Im(n)
,0 to ensure the convergence of the integral overn. There-
m

l

e

t.

y,

en
l
fore, we choose the pole in the lower half space@Fig. 15~a!#,
e.g.,n52m/2p @recall Im(m).0, which gives Im(n),0].
Note that the integral is along the clockwise direction whi
gives us an extra minus sign. The resultant integral is
l is thus

e

E e2 i2pnz

~2p!2S n1
m
2p D S n2

m
2p D dn522p i

e2 i2pnz

~2p!2S n2
m
2p D 5

n52m/2p i
2meimz. ~B7!

Similarly, for z,0 we require Im(n).0. Therefore we choose the pole in the upper half space@Fig. 15~b!#, e.g.,n5m/2p.
The integral is along the counter-clockwise direction so there is no extra minus sign in this case. The resultant integra

E e2 i2pnz

~2p!2S n1
m
2p D S n2

m
2p D dn52p i

e2 i2pnz

~2p!2S n1
m
2p D 5

n5m/2p i
2me2 imz. ~B8!

Combining Eqs.~B7! and ~B8!, we have the general expression for the integral overn:

E e2 i2pnz

~2p!2n22m2
dn5

i

2m
eimuzu. ~B9!

Substituting this equation into Eq.~B6!, we then end up with the Weyl expansion of the Green’s function:

G0~r !5E E dp dq e2 i2p(px1qy)
i

2m
eimuzu, ~B10!

wherem5@k0
22(2p)2(p21q2)#1/2 and Im(m).0.

The Weyl expansion represents the superposition of elementary harmonic waves in thex andy directions (e2 i2p(px1qy));
the harmonic waves exponentially attenuate in thez direction away from the planez50 which contains the source. Th
harmonic waves and the attenuation factorieimuzu/2m are so combined that the double integral in Eq.~B10! over all the spatial
frequencies (p,q) yields the elementary damped spherical wave on the left-hand side of Eq.~B10!, i.e., G0(r )
5eik0r /(4pr ).
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