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Near-field diffraction tomography with diffuse photon density waves
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An angular spectrum algorithm is presented for fast, near-field diffraction tomographic imaging with diffuse
photon density waves in highly scattering media. A general relatidd gpace is derived that connects the
spatial variations of the optical properties of heterogeneities to the spatial spectra of the measured scattered
diffuse photon density waves. The theory is verified experimentally for situations when boundary effects can
be neglected. We further describe how to reconstruct absorption and scattering properties simultaneously, and
how to incorporate boundary conditions into this angular spectrum algorithm for a turbid medium of finite size
(e.g., the slab mediumLimitations and potential improvements of the near-field diffraction tomography are
also discussed.

PACS numbeps): 87.10+e, 42.25.Fx%, 42.30.Wb, 42.62.Be

[. INTRODUCTION fraction tomography 16,17, it is possible to rapidly recon-

Optical radiation was used to image breast tumors by thetruct thin slice and spherical objects whose absorption
shadowing effect as early as the 1920% However, recent and/or scattering parameters differ from the background ho-
advances in light generation and detection, along with immogeneous scattering mediyi20]. Our image reconstruc-
provements in our theoretical understanding of near-infraredon algorithm, based upon diffraction tomography technique
(NIR) light propagation in tissue-like highly scattering turbid (called angular spectrum algorithm in this papes rapid,
media have opened new possibilities for optical imaging ofpermitting object localization and characterization~1000
the interior of thick biological tissuel2]. In highly scatter- volume-element samples on sub-second computational time
ing media such as biological tissue, light propagation is descales. Such an angular spectrum algorithm has recently at-
scribed adequately within the diffusion model of photontracted the attention of many researchers in photon migration
transport[3-5]. It has been shown by several investigatorsfield [18,19. In this paper we provide a more complete dis-
that diffuse photon density waves, which are created insidéussion of the results reported in those earlier papers, and we
highly scattering media by an intensity modulated lightprovide a detailed analysis of this algorithm incorporating
source, obey a Helmholtz wave equation with a complexhe effects of finite boundaries. We first derive the general
wave numbef6,7]. In spite of complexities resulting from integral solution of the total and scattered photon density
strong tissue scattering, diffusing photons offer many attracwaves in a heterogeneous turbid medium within the first or-
tive features for imaging thick tissue. These features includger Born approximatiortSecs. II, lll, and IV. These ses-
noninvasiveness, low cost, and unique optical contrast angions are largely reviews, but are included for completeness
spectroscopic signatures with clinical and physiological rel-and clarity. We next derive a relation Kispace between the
evance8,9]. spatial spectrum of the heterogeneity function and the spatial

The goal of diffuse optical imaging is to reconstruct a low spectrum of the measured scattered diffuse photon density
resolution map of heterogeneous absorption and scatterinjave (Sec. V A. Experimental results are presented to
variations from the measurements of diffuse photons on ¥erify the feasibility of the angular spectrum algorithm for
sample surface. Image reconstruction entails solving the inmage reconstruction. We then describe a method to recon-
verse problem. Most quantitative optical image reconstrucstruct the absorption and scattering properties simultaneously
tion algorithms such as the algebraic reconstruction techwith this algorithm. Some limitations and potential improve-
nique (ART), the simultaneous iterative reconstruction ments of the diffraction tomography are discussed in Sec. VI.
technique(SIRT) [10], the Newton-Raphson technique com- Finally, we illustrate how to incorporate boundary conditions
bined with finite element numerical methdd1-13, the into the angular spectrum algorithm for a turbid medium of
conjugate gradient descent technijid], and singular value finite size, in particular, the slab medium and the semi-
decomposition(SVD) [15], rely on iterative schemes in a infinite medium(Sec. VI).
least-square sense. The optical image reconstruction there-
fore requires a significant amount of computational resources
and time.

Recently, we showed that by using the techniques of dif-

II. PHOTON DIFFUSION EQUATION
IN HETEROGENEOUS MEDIA -A
PERTURBATION APPROACH

Light transport in highly scattering turbid media is often
*Present address: Department of Electrical Engineering and Conwell described by photon diffusiofi2]. Consider a light
puter Science, Massachusetts Institute of Technology, Cambridgsource atrg with its intensity sinusoidally modulated at
MA 02139. Electronic address: xingde@mit.edu modulation frequencyf, e.g., the source term i§(r,t)
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Scattere properties. The goal of optical tomography is to reconstruct
the map of these heterogeneous optical properties from mea-
surements of the scattered wave.

/ In a heterogeneous medium we write the optical proper-
./ ,’ ties (u, anduy) as the sum of background optical properties
—/?\— |\ ( '\ (,;ao, ;;;0? apd the variations relative to the background
, , e,
Source \ N (Oma :“s)
& Ma(F) = paot Spa(r), 4
Background ()= pgo+ Spd(r). )

FIG. 1. In the presence of optical inhomogeneities, the sphericatonsider the case of weak optical inhomogeneities where
wave fronts of the background wave are distorted and the scatteregIM < a0 and Sul<ul,. The optical inhomogeneities in-
wave is generated. The total photon density wave is the sum of thﬁ‘oguceagl weak psertu?%;’:ltion to the background wave, i.e
background wave and the scattered wave. |(Dsc(r)|<|d>0(r)|. Substituting Eqs(4) and (5) into Eq. (1)
and keeping only the zeroth and first order terms in optical

_ —iwt _ —iwt _ — i _ L. . .
=S(rje"""'=Mee ' 5(r—ry, wherew=2zf is the angu- . ,hary variations as well as in the scattered wave, we find

lar source modulation frequenéyM is the source strength

representing the number of photons emitted per second. Con- v S (1)

sider steady-state photon dl_ffu3|0n in which the photon flu- (V2+ ké)d)(r)= oo 1+ S/ S(r) = TapdT)
ence®(r,t) has the same time dependence as the source, 0 HMso

i.e., ®(r,t)=d(r)e ', It is straight forward to show that

the photon fluencé (r) satisfies the photon diffusion equa- ~Tsdr), 6)
tion [3-5]:

where we have introduced the heterogeneity functions
V.- DVO(r)—vu® () +iod(n)=—vS(r). (1) Tapr) gndec(r) reprgsenting t'he perturbations due to the
absorption and scattering variations. They are
Here the common time dependence exp{t) of the flu-
enced (r) and the sourc&(r) are omittedw is the speed of __ v
light in(tr)1e turbid medili(n;l)D=v/3,ug is photon diFf)fusion Tand 1) = D_o(DO(r)é'ua(r)' )
coefficient;u, andu. are respectively the optical absorption

and reduced scattering coefficients. 3D0k§ ) V[Spi(r)]
In a homogeneous medium, the absorption and scattering Tsc(") =~ Po(1) dus(r) = ——————-VPo(r).
coefficients fu40 andugy) are constant, and the above equa- s )

tion reduces to a simple Helmholtz equation:

Note thatSu.(r)/ui,S(r) is zero as long as the source is
2 2 _ ’ s sO
(Vo4 ko) Po(r) = = 3usoS(r). @ outside the inhomogeneitgwhich is generally the case in
Here the wave numberk, is complex and kg practh, andingreioreive can Qr(_)p this term from E@
— (3L~ paotiw/v)]¥2 with Im(kg)>0 to ensure that In addition we assume, for simplicity, that the scattering var-
Fs0 ao 0 ies slowly in space so that the terM[ul,+ dus(r)]/

the photon density goes to zero at a large distance. , _
In an optically heterogeneous turbid medium, the spherii“sO’VCDO(r) can be neglected. We thus have the following

cal wave fronts of the background wave are distorted by’IMPlified equation for the total photon density wabgr)
inhomogeneities. As illustrated in Fig. 1, the total photonWithin the first order Born approximation
density waveb(r) is the sum of the background waskg(r)

and the scattered wavk(r) (V2+ kg)db(r)z — DLS(r)—T(r), 9
0

D(r)=Po(r) + P (r). () .
where T(r)=T,,{r)+Ts(r) and the heterogeneity func-
The background wavé,(r) represents the photon density tions T,p{(r) andT¢(r) are given by
wave in a homogeneous turbid medium for an arbitrary ge-

ometry; the scattered wave is produced by optical inhomo- v

geneitBi/es in an otherwise horr?ogeneous ):negium with the TabS(r):_D_O(DO(r)g“a(r) (19
same geometry as the background wave. The scattered wave

is determined by characteristics of the inhomogeneity such 3Dokg

as its size, shape, position, and its absorption and scattering TsdN)=— Do(r) dpug(r). (11)

We see that the heterogeneity functions can be treated as
The continuous-wavéCW) case is a special case wheave=0 equivalent “source” terms, which give rise to the scattered
and the frequency domain analysis can be readily applied to the c\Wwomponent®(r) of the total diffuse photon density wave
case. D(r).
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Ill. TOTAL DIFFUSE PHOTON DENSITY WAVE

IN HETEROGENEOUS TURBID MEDIA — THE Detegilon Z  Detection Plane
GREEN'’S FUNCTION APPROACH (Scanning) =T ;Ei‘i::‘:;—_;/ DX, Y, Zg)
, , , e e
We will take a Green’s function approach to derive the AT or
total and therefore the scattered photon density wave in a —— -7 -
heterogeneous highly scattering medium. Consider the - ®| (opject Pse(P; 9, Zg)
Green'’s function in turbid media which satisfies
Y

V2+Kj =—a(r,r").

( 0)G(r.r’) or,r’) (12 Source Fiber
Using the Green'’s theorem, we obtain an integral expression X

for the total optical density waveé(r)

G(r,r,)mb(r )_Cb(r,)aG(r,r )
an’ an’

FIG. 2. lllustration of 2D geometry which we consider for the
v image reconstruction algorithm based up#&hspace spectrum
<1)(r):—f S(r’)G(r,r’)d3r’+f T(r’)G(r,r’)d3r’ analysis. The scattered wak.(X,y,z4) (or its spatial Fourier
DoJv v component®.(p,q,zy) is determined at the detection plaze
=1z4 by scanning the detector over a square region. Without losing
+ J' dA’. generality we assume the optical heterogeneities are located below
S the detection plane a=z,. A point source can be placed any-
where in the turbid medium. In practice the point source and the
(13 detection plane are either on the opposite side of the heterogeneities
The first term on the right-hand side of E4.3) is a volume (tra_ns_missioh or t.)Oth on the same side of the heterogeneities
integral of the light source over the entire turbid medium. 1tSMSSion- In this figure the point source happens to be placed at the
gives us the background wave. The second term is a Volum%“gm of our coordinate system for demonstration of a transmission
: . ) . ._Measurement geometry.
integral of the heterogeneity function over the entire turbid
medium and it determines the perturbation resulting from th by definition: the difference between the total photon den-
optical heterogeneities. The third term is a surface integr Uity waved(r) and the background wavi,(r)] is
over the closed surface of the entire turbid medium. It takeS' > 9 0
into account the boundary effects on the total photon density
wave, and it includes contributions to the total photon den- q)sc(r)=<b(f)—@o(r)=J T(r'")Go(r,r"Hd3’. (14
sity wave from both the background wave and the scattered v
wave on the boundaryn’ in the surface term denotes the
surface normal pointing outward. For an infinite heteroge- V. IMAGE RECONSTRUCTION ALGORITHM
neous medium, this surface term is zero since the enclosure AND EXPERIMENTAL RESULTS
surface of an infinite medium is at infinity. Therefore the
scattered wave can be simply separated from the background The scattered wave depends on the heterogeneity func-
wave. For a finite turbid medium, however the separation ofion. In practice the scattered wave can be obtained from
the background wave component from the scattered wav@easurements and knowledge of the background wave.
component in the surface term is generally difficult. It is Given the scattered wave, how can one obtain the heteroge-
advantageous therefore to remove the surface integral fromeity function and thusSu,(r) and dug(r)? The approach
the total photon density wave by choosing an appropriateve take here employs the angular spectrum analysis of the
Green’s function. We will consider this complicatéget  scattered wave. In this approach we relate the spatial spec-
more realisti¢ case at the end of this paper. We will start trum of the scattered wave to the spatial spectrum of the

with a simple case - the infinite geometry case. heterogeneity function. The analysis involves forward and
inverse Fourier transforms following the conventions given
IV. SCATTERED WAVE IN INFINITE HETEROGENEOUS in Appendix A.
TURBID MEDIA

As shown in Fig. 1, in the presence of optical heteroge- A. The angular spectrum algorithm

neities, the total photon density wave consists of the back- The experiment we consider for the angular spectrum al-
ground wave and the scattered wave, and the scattered wagerithm has a two-dimensiongRD) planar geometry. As
carries the information of the optical inhomogeneities. For arshown in Fig. 2, the scattered wadg(r) is determined at
infinite geometry, the surface integral in E43) disappears. a planez=z4 from a set of measurements in that plane.
The background wave in this case is given by the first ternEquation(14) tells us that the scattered wadg;(r) is the
(volume integral of the sourg®n the right-hand side of Eq. convolution of the heterogeneity function(r) with the

(13). For an infinite geometry, the Green’s function is Green'’s functionGy(r,r’). In order to reveal the relation
Go(r,r"y=exp(iko|r—r’|)/4m|r—r’|. Using this Green's between the scattered wave and the heterogeneity function in
function and considering a point sourcerat i.e., S(r') K space, we first expand the Green’s function in terms of
=Myd(r' —rg, we can readily show that the scattered waveplane waves in two dimensions, i.e.,
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Go(ry,r’ +o0 . )
olfa.r) @otrg= | [ dpdabudp.azge =m0, a9

fﬂf dpdaGy(p,d,z4,2")e 1 27IP0a )+ aka=y")]
o and comparing Eq(17) and Eq.(19), we then obtain the

o i relation between the spatial spectrum of the scattered wave
f f dpd02_eim\zd*Z’\e*i2w[p(xd*><’)+q(ydfy’)], and the spatial spectrum of the heterogeneity function at any
—o m given spatial frequencyp(q), i.e.,

(15 -
. . . (Dsc(p!qlzd):j dZIGO(p!qazd1Z,)T(pvq12’)- (20)
where (,q) are the 2D spatial frequencies with respect to -
thex-y coordinates. In the second line of the above equation,

we have employed the Weyl expansion of the Green’s func- Wi.thout losing generality,.we assume Fhe optical _hetero-
tion [21], i.e. geneities ardelowthe detection plane. This assumption en-

ables us to remove the absolute value sign in the Weyl ex-
i pansion in Eq.(16) sincezy—2z'>0. We also assume the
Go(p.q,2q4,2' )= =—e'Mza=2'l, (16)  heterogeneities are localized between the detection plane at
2m z=1z4 and a plane at=z,. Thus we need consider only the
interval between £=z,, z=z,) for the integral in Eq(20).
where m=[k§—(2m)%(p?+q*)]"? and Imm)>0. The Dividing the turbid medium between the planezatz, and
derivation of the Weyl expansion of the Green'’s function isthe detection plane into slices, we can rewrite &§) in the

given in Appendix B. following form of discretized summation
Note that Eq(15) is theangular spectruntepresentation

of the Green'’s function, a solution of the wave equation with . N R .
a point source atx’,y’,z'). At any point inside the half D(p.0,29)= >, AZT(p,0,2)Go(P,0.24.2)
space to the righfor left) of the source, there are eigen-plane =1
waves in thex-y plane whose amplitudes and phases vary N Az '
with the distance from the sour¢ey—z'|. Because of the => ——T(p,q,z;)em@2), (22)
large positive imaginary part o, the amplitude decays ex- =1 2m
ﬁggﬂﬂ:"g O\Lerr;u;;?ﬁt‘pglrgﬁgcvv?\ﬁ; cf,lvslttﬁ 'fgz; L;:Vﬂ‘g fre _vAvhere in the se_cor?d line we subst_itute the Green’; function
quencies §,q) (and therefore a large imaginary partoj ~ Go(P.d.24,2)) with its Weyl expansiohiEq. (16)]; Az is the
will have negligible amplitudes. This is the characteristic dif- discretized step size along tledirection andN is the total
ference between diffuse photon density waves and ordinar?umb?r of slices in the direction. Ideally t_he dlscret|za_t|0n
diffractive electromagnetic waves in lossless dielectric meStep sizeAz needs to be as small as possible. In practice we
dia. These plane waves will be scattered by optical inhomoCh00seAz to be a few random walk stefise., ~1/u).
geneities and their resulting amplitudes and phases will carry Equation(21) implies that at any given spatial frequency
information about the absorption and/or scattering charactef.d), the heterogeneity functions at different depfts can
istics of the inhomogeneities. be thought of as the “source terms” for the scattered wave.
If we substitute the angular spectrum representation of théhe plane waves arising from different slices propagate
Green's function Eq. (15)] into the volume integral of the along thez direction to the detection plane. During the
scattered wave given by E¢l4), after simple algebraic ma- Propagation these plane waves experience different ampli-
nipulation and interchanging the order of integrations, wetude attenuation and phase shifts which are given by
obtain the following representation, known as tegular €™~ %)/m, wherem=[k3—(27)%(p?*+q%)]*? is a com-
spectrumrepresentation of the scattered wave plex number with Im(n)>0; the scattered wave detected at
the detection plane=z, is thus a sum of plane waves origi-
+o0 , nating from the heterogeneity functions at different depths.
(Dsc(rd)zf f ) dpdqe 2m(PXatave) In Fig. 3 we illustrate this concept. In this figure we consider

two nonzero heterogeneity function;(p,q=0.z;) and
' A A / T,(p,q=0,2,) corresponding to plane waves along thdi-
Xf d2'Go(p.0.24,2)T(P.G.2),  (17) rection in thex-z plane(i.e.,y=0) with a spatial frequency
p at depthz; andz,. The perturbations from these two slices
where T(p,q,z') is the 2D spatial spectrurfFourier trans- Propagate to the detection plane with a phase shift and am-
form) of the heterogeneity function, i.e., plitude attenuation facta'™(Z~%)/m. At the detection plane
the perturbations from these two slices add up to make a

- +oo _ CL scattered waveé (p,g=0,zy) at the same spatial frequency
1 — ’ ' VAL 2m(px’ +qy’) sc

T(p,q,2") f ﬁw dx'dy'T(x',y’,z")e'™Px Tay), p. )

(18 In K space the propagation of the perturbatioip,q,z;)
at different depthsy—z; is weighted by the amplitude at-

Taking the 2D Fourier transform of the scattered wavetenuation and phase shift given by the Weyl expansion of the
d,(ry) in the detection plane &=z, i.e., Green’s functionGy(p,q,zq4,z;)=ie™Z~%)/(2m). Recall
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two slices
X
T, Y
2 < Spatial Freq p
% D
N
/?\ 4
T
2x
P
1
z, 2, Detection Plane Z4
Hetero. Function T at Slice 1 Hetero. Function T at Slice 2
Propag Delay Propagation Delay
,\ /\ /\ and attenuation /\ /\ and attenuation
\/ \/ \/’ exp[im (z4-z) Vm == \/ \/ expl i m(z4-z;) Ym
X 20
Detected Scattered wave /\ /\ 1
— at detection plane |

with the same Frequency p \ ] ‘ ] ‘

FIG. 3. The heterogeneity functiofig and T, with spatial frequency from two slices propagate to the detection plane=azy where
they add up to make the scattered walvg. in K space at the same spatial frequepcy

m=[k3— (27)%(p?+q?)]1*2 with Im(m)>0, therefore the Fcl)r spatial frequenciesp(q) with the range of(0, 1.6
- 2 o, lot the amplitude and phase of the Weyl expan-
amplitude and phase of the Weyl expans®g(p,q,z4,2;) cm =, we p - I :
depend on the spatial frequencyg,() at a given deté)thjzd sion (Afelm(zd Z_')/m) in Figs. 4a) gnd 4b) assuming th?
—2z;. The amplitude decays more quickly as the spatial fredepth iszg—z=1 cm. In calculating thf_bf;‘/:gg'ﬁg”d dif-
0 lw 0 we

quencies p,q) increase, and the Green’s function effectively fusé wave wave numbeko=[(—vuq .
acts as a low pass filter i space. choose background optical propertiggo=0.02 cm - and

Vo
WoN -

\og Amp. of exgflzez)m
i
Prose of exgfimlzezfm

10° T T T T =

£ N g
= =
~ 10 I N ~
N A < £
5 < (p.q)=(0.1, 0.1) cm ~
S -4 < 1T =
£ 10 . 7
g ™y =
S 1070k N 1 E
: g ;
g 107f o1 .
= (p,q)=(0.5, 0.5) cm™ ~ o
[ o
€ 107101 S g
= £

0 1 2 3 4 5

Depth z4—z; (cm) Depth z4—z; (cm)
(c) (d)

FIG. 4. (a) and(b) respectively show the amplitude attenuation and phase shift associated with the Weyl expaKs&page versus
spatial frequenciesp(q). Note in(a) the z axis is the log of the amplitude &™Z~%)/m; in (b) the z axis is the phase a™Z~%)/m in
degrees(c) and (d) show the amplitude attenuation and phase shift versus the dgptyy for given spatial frequencie®.1, 0.3 cm™ !
(solid lineg and (0.5, 0.5 cm™? (dashed lines
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ulo=8.0 cmi’! and a 140 MHz modulation frequency. The ?(p,q,z b1
resultant wave number i&o|~1.1 cm . We find that the o
amplitude attenuates by 7 orders of magnitude when the — A
spatial frequenciesp(q) increase from(0, 0) cm™* to (1.6, L Uge(pid,24)
1.6) cm 1. In practice the maximum spatial frequency is

' Detection

determined by the Nyquist sampling frequency, i@y Source *
Plane

=1/2Ax~0.833 cm! for a scanning step sizeAx
=0.6 cm. In Figs. &) and 4d), we also plot the amplitude
attenuation and phase shift versus depth for given spatial —
frequencies, i.e.(0.1, 0.2 cm ! and (0.5, 0.5 cm™*. The
amplitude attenuates exponentially and the phase shift in- Z=0 Zoy 2224
creases linearly as we consider the perturbation from deeper
slices. Again as already shown in Figich the amplitude FIG. 5. The heterogeneities are considered to be thin, which
attenuates much faster at spatial frequenes, 0.5 cm™ ! locate within a thin slice at=z,y; in parallel to the detection plane.
than at(0.1, 0.1 cm i At any given depth id_zj), those The heterogeneity function within this thin slice is approximately
plane waves with sufficiently large spatial frequencipg uniform and the heterogeneity function is zero elsewhere.
have negligible contribution to the scattered wave, and there-
fore carry less information about the inhomogeneities. tions, a CW DPDW is not sufficient to separate the absorp-
tion and scatteringsee Sec. MA)].

Consider next a case where the optical heterogeneities are
located within a “thin” slice atz=z,,; (see Fig. %. If the

2D photographic images have been used by radiologistslice thicknessAz is less than a few transport mean free
for many years. In order to acquire 2D photographic-typepath-lengths [ 1/(u.o+ a0)], the heterogeneity function
projectionimages, we make a “thin” slice approximation by ithin this thin slice is approximately uniform, therefore Eq.
replacingz; on the left hand side of Eq21) with the esti-  (22) provides a quite accurate relation between the heteroge-
mated slice position of the object. We then drop the sunheity function and the scattered waveKrspace, and optical
over allother z's and obtain the following simple relation at properties of the heterogeneity can further be deduced quite
any given spatial frequencyp(q) in K space between the accurately. For thicker objectse., thickness>4 mm), the
heterogeneity function at depth=z,,; and the measured average over the size of the object weighted by the sum of

B. 2D projection imaging

scattered wave at the detection planezy: exponential amplitude and phase factef®(%~%)/m pro-
- vides only an approximate relation between the heterogene-
(0.0, Zop) = Psc(P.0:2q) ity function and the scattered wave. However we find that the
T eoby Azéo(p,q,zd Zop)) relative opt|ca! properties of multiple objects can still be re-
constructed with an reasonable accuracy.
2m Obviously the image reconstruction involves only 2D for-

e —im(z4—2op)) . . . .
iAz(I)SC(p’q’Zd)e ¢ ren. (22 ward and inverse Fourier transforms, and no iterative

schemes are needed; therefore this angular spectrum algo-

This “thin” slice approximation may be adequate since we "thm is very rapid.

are often interested in early tumors whose size will be of the

order of slice thickness of-0.5 cm, and thus can be con- C. A priori depth information and perspectives of 3D imaging
sidered thin. As we discussed at the end of S&é\ )Vplane o . . o .
waves inK space with large spatial frequencies,q) are From the derivation we notice that in principle, this
attenuated quickly as they propagate within the turbid mediatﬁKg;SIOaCe spectrum analysis algorithm should work well when

The largest detectable spatial frequencies are determined ee?Etc'gilsgﬁgirgr??:g'efoeirgego;f'zngd r;lz:ttcr)"r;aa r;[|hcm rsgl'cei'-
the sensitivity and signal-to-noise ratio of the detection sys- P P graphic proj

tem tion image of the optical properties givenpriori informa-
' , ) A tion about the depth of the heterogeneity. Since the hetero-
When the heterogeneity function Kispace,T(p,d,Zop;),

. ! A geneity function (therefore the optical properties of the
is determined by Eq(22), we can then take the inverse peterggeneitiess related to the scattered wave via the Weyl

2D Fourier transform ofT(p,q,z,p;) to obtain the tumor expansion of the Green’s function, and since the amplitude
function T(X,y,zopj) in the real x-y space at the depth and phase of the Weyl expansion depend upon the degpth
of the heterogeneityz=z,,;. We derive a 2D photo- —z;, an incorrect depth estimate produces incorrect values
graphic image of the optical properties using E4$0)  of the reconstructed optical properties. This type of errors is
and (11); for example, dua(X,Y,Zobj) = Tans(X:¥:Zob))/  intrinsic to the angular spectrum approach. However, rough
[—v/Do®Po(X,Y,Z0pj)] for absorbing objects, and estimation of the depth information can be tolerated if it is
5,ug(x,y,zobj)=Tsc(x,y,zobj)/[3D0k§/v(I)O(x,y,zobj)] for  desirable to reconstruct contrast images of multiple objects.
scattering objects. Note that for a purely absorbing or scat- Equation(22) reveals how the heterogeneity function and
tering object, either a frequency domaimodulation fre- hence the reconstructed optical properties of the heterogene-
guencyf #0) or a continuous-waveCW, f=0) DPDW can ities vary with the estimated depth. Choice of a too small
be employed to extract the absorption or scattering variationgepth underestimates the optical properties and a too large
but for objects having both absorption and scattering variadepth overestimates the optical properties. Figueae €hows
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2.0

o
-
»

depth estimate for contrast image can be tolerated in this
case.

The image quality is also affected by the choice aof
priori depth. Recall the heterogeneity function and the scat-
tered wave irK space is coupled to each other via the Weyl
expansion[see Eq.(22)]. The factore '™Za~Zb)/m in-
creases exponentially with thezq—z,p;). The noise(nu-

- . . 00 . . . merical and experimentatan be amplified at greater depths
0 1 2 3 4 0 1 2 3 4 (24— 2Zopj)- A series of reconstructed images with different
Depth 2,z (cm) Depth 2,2 (cm) depths are shown in Fig. 7. In this example an absorbing

FIG. 6. (a) shows the reconstructed absorption coefficient versuépher'cal O_bJeCt is a2, 1, 3 cm and the scattered wave is
the depth estimation. The data points(@ are normalized by the Measured in the plane a&=5 cm over a X9 et square
absorption reconstructed at the depth where the object is,zg.g., With steps of 0.6 cm. The imageb)—(f) are reconstructed
~Zo5;=2 cm. (b) shows the ratio of reconstructed absorption of With assumptions of the deptlz{-z,) to be respectively
two spherical objects versus the depth estimation. Although thé, 3, 2, 1, 0 cm. We find that the image quality gets worse
ratio is only approximately reconstructéel.g., the true ratio is)2 ~ (€.9., noisier at greater depths. The depth-dependent noise
the ratio is relatively insensitive to the depth estimate. and themonotonicvariation of the image sharpness make it

difficult to estimate the true object depth from image sharp-
the reconstructed absorption coefficient of a spherical objed1€SS- For a spatially extended object, however, a choice of a
versus the estimated depth—z,p;. In this case, we have a shallpw dept_h is of'gen suff|C|ent_ t_o reconstruct fairly well the
spherical object of 0.5 cm radius 2 cm below the detectiorsPatial margins of inhomogeneities. o
plane, i.e.zy—zyp;=2 cm. The true optical property varia- _ In order to obtain be'tter 3D information with this diffrac-
tions of the spheres with respect to the background arfiOn tomography technique, one can use a secondary local-
S11,=0.02 cm! and Su.=0. We find that the recon- ization scheme to deduce the obJ_ect depth. An example
structed absorption increases as the estimated object de uld be to scan the phased-arr_ay In two Qrthogonal planes
increases. In Fig.(®), we plot the ratio of the reconstructed 2,23. Alternatively as shown in Fig. 8, it we .take two
absorption coefficients of two spherical absorbing objectspl"’m"’lr measurements' alc.)ng.two different d|re(;t|ons of the
(8= 51u"S%) versus the estimated depth. One sphere 01same_sample, the prOJectlon_ image 1 from the flr_st measure-

- 1 . o ment in one planéplane 1 will provide the depth informa-

Ot =0.04 cm ~anddug =0 cmﬁl is at(2, 1, 3 cm aﬁnld tion for the projection image 2 from the second measurement
the other sphere 0fu,,=0.02 cn* and dus,=0 cm

_ in the other plandplane 2.

is at(1,—1, 3 cm. Two spheres have the same di@éb cm

in radiug and they are chosen to to be at the same depth, D. Experimental results

e.g., 2 cm below the detection plane. Therefore any depth '

estimate is either correct or incorrect for both objects at the To demonstrate the experimental feasibility of this algo-
same time, and we do not have to take into account th&thm, we have performed amplitude and phase measure-
additional complexity shown in Fig.(6). We find that the ments in a parallel-plane geometflfig. 2) within a tank
ratio of the reconstructed absorption coefficients is not senfilled with 50 liters 0.75% Intralipid fi,0=0.020 cm!,
sitive to the depth estimation, and therefore the incorrecit’,=7.3 cni''). We used a rapid homodyne detection sys-

©
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Rotio 841/ Ojter
o n
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»
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Reconstructed 8u,(cm™")

o
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® ®) L ]
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Z;z:th =2cm Zdepth =4 cmu Zdepth=3cm
@ (b) (©)
Zdepth=2cm Zdepth=1cm Zdepth=0cm
(d) (e) ®

FIG. 7. lllustration of the dependence of reconstructed images on the estimated depth. The detection plaresiscat and an
absorbing object shown ifa) is at(2, 1, 3 cm, which is 2 cm below the detection plarib) through(f) are the images reconstructed with
an estimated depth at, respectively, 4 cm, 3 cm, 2 cm, 1 cm, and 0 cm.
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Detection plane 2 For image reconstruction, we first take the 2D Fourier
[ 'J—L AR transform of the scattered wave,(r4) measured at the de-
Image 2 tection planez=z,. Using Eq.(22) along witha priori in-

formation about the slice depth, we then obtain the hetero-

geneity function in K space 'i'(p,q,zobj) in the plane
containing the slice a=z,,;. During this step, an “m-cut”
filter is used to neglect high spatial frequency components
with Im(m)>3.5Im(ky) in the heterogeneity function

'T'(p,q,zobj) [25]. We then take 2D inverse Fourier transform

of f(p,q,zobj) with respect to spatial frequency,q) to
\.|/ obtain the h_et_erogeneity functioT_(x,y,zobj) in real space.
AN Finally we divide fche heterogene|t_y functld'r(x,y,zobj).by
Source 2 the background fieldby(X,y,z,p;) in the plane containing
. _ ) the slice atz=z,,; to obtain a spatial map of the recon-
FIG. 8. lllustration of how to obtain a 3D image from two pro- strycted  absorption  variation, e.g., SalX,Y,Zopj)
jection images reconstructed from two measurements along two or- TabdX,Y,Zop ) /[ — 0/Do®o(X,Y,Zop) ]. The homogeneous
thogonal directions. Image 1 from the measurement in plane 1 pro()ackground fiJeIdCIDO(x,y,zob-) is caljculated using the best
vides the depth information for image 2 from the measurement inestimated optical propertiés,ugo=0.017 em! and Méo
plane 2. =7.21 cm'l) by fitting the background waveéy(r4) mea-
sured in the detection plane=z, to the exact solution of
tem based upon in-phase/quadrat{i@®) demodulation tech-  pppw’s [e.g., ®y(r) =v M expke|r —rd)/4mDg|r —r4].
niques[20,24). A block diagram and details of the experi- The reconstructed images of the slice are shown in Fig. 9.
mental setup are given in referen@g]. The complete reconstruction based upon forward and inverse
The experimental geometry is shown in Fig. 2. The sourcgFt calculations takes less than 0.2 second CPU time on Sun
position was fixed and taken to be the origin of our coordi-gparc10 workstation. The reconstructedy position was
nate system. As shown in Fig. 2, we “made” the detectiongphoyt at—1.80,—0.25 cm, close to the trug-y position at
plane by scanning a single detection fiber over a square rg-_1 6 —0.3) cm. Inaccuracies in the position measurements

gion from (—4.65, —4.65, 5.0 cm t0(4.65, 4.65, 5.pcmin  yight account for the discrepancy. The reconstructed absorp-

a plane az4=5.0 cm in steps of siz&x=Ay=0.3 cm.  tjon coefficient is well above the background noise level and
The amplitude and phase of the DPDW was recorded at eaitjyse to the true value. e Pu'eC =0.125-0.018 cml
, €. i=0. : :

.. . . a,ob
position for a total of 1024 points. Each data point takeSrhe ncertainty corresponds to 1 mm uncertainty in the slice

about half second. We direct_ly measure'd the amplitude anGepth estimation. Errors in our estimate of background opti-
phase in thromogeneousedium to obtain the background 5| properties, the refractive index mismatch between the

wavePo(rq). _ , o ____object (~1.46) and background medium-(..33) and our
In this experiment, an absorbing slice with dimensionsiapijity to detect high spatial frequency components in the

1.5x1.5x0.4 cnf was submerged in the turbid medium gcarered wave also contribute to the inaccuracy in recon-
(0.75% Intralipid at position (-1.6, —0.3, 3.0 cm. The gty cted absorption properties.
slice was made of resin plus TjGnd absorbing dye. TiO

particles(from Sigma cause the scattering and the absorbing
dye (900NP from Zenedacauses the absorption. The absorp-
tion coefficient of the slice wag, opj=0.12 cm 1 its scat-
tering coefficient was about the same as that of the back-
ground, i.e.,~7.3 cm ! The scattered wavé (ry) was
obtained by subtracting the background wabg(rg) from The angular spectrum algorithm provides an approximate
the measuredtotal) signal®(rg). relation between the heterogeneity function and the scattered

| aueyd uonv9laqg

VI. SIMULTANEOUS RECONSTRUCTION
OF ABSORPTION AND SCATTERING,
AND EXTRACTION OF BACKGROUND
OPTICAL PROPERTIES

| 9.30 cm |
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FIG. 9. (a) shows the exact-y position of a thin absorbing slicéb) shows the surface plot of the reconstructed absorption variation
(65 using the angular spectrum algorithfo) illustrates the reconstructed 2D photographic image of this slice. Agreement between the
reconstructed position and the exact position as showa)inan be readily found.
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wave within the framework of the first order Born approxi- ——
mation. In addition to this first order approximation, it also
requires knowledge of the background optical properties.
The resultant images are 2D photographic-type images. Ir
this section, we consider the possibility of simultaneous re- Thm.s“ce ‘ . .
construction of the absorption and scattering coefficients,

and we explore methods to extract the background optica - b )

. . b c
properties from a single measurement on a heterogeneous @ _ _( ) _ © _
sample. FIG. 10. (a) shows a thin slice object &t, —1, 3) cm. The slice

is 0.3 cm thick with its 1 cn? surface in parallel to the detec-
tion plane atzy=5 cm. The scattered waves at two modulation
frequencies(70 MHz and 140 MHE in the detection plane aty

So far, we have assumed that we have either purely ab=5 cm are calculated using finite difference method over a 9.3
sorbing inhomogeneities or purely scattering inhomogenex 9.3 cnf region withx-y steps of 0.3 cm(b) and (c) show the
ities, but not a mixture. We introduce a dual modulationabsorption and scattering images reconstructed simultaneously us-
frequency approach as a means to reconstruct the absorptiiig the dual modulation frequency approach. The reconstructed po-

Absorption lmage‘ Scattering Image

A. Absorption and scattering

and scattering coefficients simultaneously. sition of the slice is close to its true position and the reconstructed
When both absorption and scattering variations argbsorption and scattering properties are close to their true values.
present, the heterogeneity function is See Sec. VIA for details.
Dokg Figs. 1@b) and 1@c). The reconstructed absorption and scat-

v 3
T(N==5-Po(r)dualr)+ Do(r)dus(r). (23 tering coefficients are Su,=0.025 cnmi! and Su!.
0 =3.32 cm . We find that this approach provides simulta-
Within a “thin” slice approximation, the heterogeneity func- neous estimates of the absorption and scattering coefficients
tion T(r) in the plane az=z,y,; can be obtained using the Wwith a reasonable accuracy.
angular spectrum algorithm. Dividin@(r) by the back-
ground waved(r) in the plane az=z,,;, we obtain the B. Extraction of background optical properties
following quantity, denoted b¥ (w), which is a function of

Spa, Sus, as well as the modulation frequeney i.e.,

T(r)
Dy(r)

v

Image reconstruction requires knowledge of the optical
properties of the homogeneous background medium. For ex-
ample, the complex spatial frequena:gx=[k§—(27-r)2(p2

=—3ulydua(r) +92)]1%?in Eq. (22) depends on the background photon den-
Zopj sity wave numbek,, andk, in turn depends upon the ab-

30 sorp'tion anq scat.tering coefficien?s of the background tu_rbid
Y _} Sul(r). (240 ~ medium. Itis derivable to determine the background optical

v properties from a single data set measured on a heteroge-
, o, ) neous medium. One simple approach is to fit the heteroge-
Note that the scattering variatioiu appears along with the  heoys data set with a homogeneous model and thus estimate
modulation frequency, whiléu, does not. Therefore, if we the average values of the bulk optical properties. We find
measure the scattered wave at two different modulation freghat the results by this approach are generally unsatisfactory.
guenciesw; and w,, the difference between the two the re- Figure 11b) shows the total photon density wade(r) (the

Flw)=

+

constructed=(w;) andF(wy) will only be related todug:  amplitude, for examplefrom the absorbing slice experiment
3 ) where the detector was scanned along a line symmetrically
 O(Wr—wy , i itti i
Fwy)—F(wy) =i Sl (25) W!'[h respect to the source. When fitting all the data points
v with a simple homogeneous model, the resultant absorption

, _ ~ and scattering coefficients agel{=0.012 cm ! and u.}"
dus can be determined from ES5). Then by substituting  —g 27 cnr2, while the expected values for 0.75% Intralipid
the resultantSu, into Eq. (24), we can then determine the are 1,0=0.020 cm ! andu/,=7.30 cm .

absorption variatioru . We can improve the results by considering the symmetry
To demonstrate the feasibility of this approach, we simul-of our detection scheme. Our scanning geométee Fig. 2
taneously reconstruct the absorption and scattering coeffis mirror symmetric with respect to the source. In Fig(al
cients of a generic slice using simulated data. The simulatiog,e project the 3D geometry into 2D to re-emphasize this
geometry is similar to the experimental geometry shown inmirror symmetry. If the medium is homogeneous, the data
Fig. 2. A 1X1x0.3 cn? slice of 4,=0.04 cmi* and i should be symmetric with respect to source: if the medium is
=12.0 cm ' is placed at (11,3) cm. The source is at heterogeneous, the left-right symmetry will be broken. This
(0,0,0) cm and the homogeneous background has opticéroken symmetry enables us to identify the data points that
properties ofu,0=0.02 cn* and u,,=8.0 cmi . Note are substantially perturbed by the inhomogeneities. Since the
that the slice has both absorption and scattering variationghase of diffuse photon density waves is not as sensitive to
with respect to the homogeneous background. The total anghe absorption variation as the amplitude, we use only the
background diffuse photon density waveszg:=5 cm are  amplitudes of the photon density waves for identifying the
calculated forf =70 MHz andf =140 MHz using the finite most perturbed data points. If the left-right difference in am-
difference method. The reconstructed images are shown iplitude signals is greater than the system noise level, we call
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\ P ——— Here n’ is the surface normal pointing outward from the
o scattering mediuma=[(1—Res)/(1+ Re¢s) Jv/2Dy where
< IR e Ress is the effective reflection coefficieAtUsing this zero
o 20} Py o ] partial current boundary condition in E¢L3), we obtain a
3 5h o % ] general solution for the total diffuse photon density wave
T —x & e s ®(r) in a finite turbid medium:
® < 10f* %
I—-Heterogeneity —— — —— ———- 5L, ; . ; : v
——————— e 4 -2 0 2 4 @(r)z—f S(r’)G(r,r’)d3r’+f T(r")G(r,r")d3’
Detector Detector Position (cm) Dolv \Y
(a) (b)
aG(r,r")
3 30 T T ; T —f@(r’) aG(r,r’)+— dA’. (27)
2 ° % . S an’
5 o = 251 % ]
& 1 g 561 :' Y How is the scattered wave related to the heterogeneity
5 o o ?;1 . . function in this case? As we discussed at the end of Sec. lll,
; 4 = 150 f . the surface term depends on the total photon density wave
- s e 10_’.' . ®(r), and therefore the surface term includes both a back-
e = s ground wave component and a scattered wave component.
4 -2 0 2 a4 4 -2 0 2 =4 Analytic separation of the background wave component from
Detector Position (cm) Detector Position (cm) the scattered wave component in the surface term is gener-
(© (d ally not feasible though perturbative approaches may be used

FIG. 11. (a) shows a 2D version of the experimental geometry approximately.
in Fig. 2. The detector scans along a line from left to right sym- The approach we take here is to find an appropriate
metrically with respect to the sourcéh) shows the raw data mea- Green’s function so that the surface term is zero by requiring
sured on a heterogeneous medium by scanning the detector along a
line from left to right.(c) shows the most perturbed data points for
which the left and right differences are greater than the noise level aG(r,r')+
of our detection systerte.g., 2.5 mV in this case(d) show the rest on’
data points after the most perturbed data points are filtered out. The
background optical properties can then be obtained by fitting théNote that this boundary condition, as we discussed in Sec.
data points shown iiid) to a homogeneous model. I, is naturally satisfied for an infinite turbid medium. By

requiring the Green’s function to satisfy E(®8), we then

those data points the most perturbed data pdisee Fig. Nave the total photon density wave(r):

11(c)]. We then exclude these perturbed data points, and fit

the rest of data pointéboth amplitude and phaséo a ho- v , 3 , 3
mogeneous moddlsee Fig. 14d)]. We find that resultant q)(r)—D—OfVS(F YG(r,r")d°r +fVT(r YG(r,r")d3r’,
optical properties are indeed improved, e.gM;'é (29)
=0.015 cm*! and u/J"=7.23 cm'. The inaccuracy de-

creases from~40% to ~25% in w,o and from~18% to  from which we can obtain the scattered wabeg(r)

~2% in pl. This symmetry technique is similar to the
phased-array technique in detection heterogendizigls Al-
though biological tissue is in general microscopically inho-
mogeneous, we speculate that this symmetry technique
might work to a certain degrees for tissues with rather ho-  Qur task is to find the appropriate Green’s function which
mogeneous macrostructures such as breast tissue. Further gxtisfies Eq(12) and the boundary condition given by Eq.
perimental investigations would be required to test the applit2g). We expect the Green’s function for a finite medium to

aG(r,r") ]
—— =0, r isonthe surface.(28)

@Sc(r):cp(r)—cbo(r):fVT(r')G(r,r')di*r'. (30)

cability of this technique tdn vivo studies. include the Green’s function in an infinite mediu@g(r,r’),
and an additional tern®,(r,r’) which results from backre-
VIl. SLAB AND SEMI-INFINITE GEOMETRIES flections at the boundaries, i.e.,

The total photon density wav@(r) for a turbid medium
with boundariesvas given by Eq(13). On the surface of the G(r,r")=Go(r,r")+Gy(r,r'), (30)
turbid medium, the diffuse photon density wave satisfies the
zero partial currentboundary conditiorf26]
The exact expression &, was derived by Haskell, Tromberg
and their co-worker$26]. An approximate expression offered by

1+ R 2Dg 9D (r) D (r) Groenhuis and co-workef&7], is in agreement with the exaBy, ¢
d(r)+ 1-R v P 0— P ad(r), within 10%. The approximate expression Ry¢=—1.440n 2
eff an an +0.710h 1+ 0.668+ 0.0636 where the relative index of refraction

for r on the surface. (26)  N=niy rurbia/MNoutair -
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air 4" z . , 0Gh(p,0,2,2' =2,)
™ petector Za aGy(p,q,z,2' =24) — 97’
Scattering =—(a+ im)éo(pvq,Zl’ =2y), (36)
Medium * p—— )
A dGu(p,q,2,2' =2
X aGp(p,q,z2,2" =2z4) + n(P iZ, @
Air Z o
=—(a+im)Gqy(p,q,2,2' =2y), (37

FIG. 12. A slab geometry is considered for the boundary prob-

lem. The slab is infinite long but has a finite thickness, ezg., ~ N imlz—2'| i
—25. One surface of the slab is at plame z, and another surface whereGo(p,q,2,2") = (i/2m)e is given by the Weyl

is at planez=z4. The turbid medium is between these two planeseXpanSIortsee Eq(16)] R

and outside the slab is nonscattering media such as air. This slab The general solution 0&,(p,q,z,z") has the form of
geometry is quite suitable for a compressed breast configuration in

clinical studies. Gin(p.q,2,2') =A™ +Be M7, (39)

whereGy(r,r')=exp(ko|r—r’|)/4m|r—r'|. G,(r,r') isre-  The first term represents the wave which is reflected by the
quired to satisfy the homogeneous Helmholtz equation lower surface atz=z, and then propagateferward along
+z direction, i.e., the “transmission” component; the sec-
ond term represents the wave which is reflected byughpser
surface atz=zy4 and then propagatesackwardalong —z
direction, i.e., the “reflection” component. Coefficients
and the following boundary condition: and B can then be solved using the boundary conditions
given by Eqs(36) and(37). After some algebra, we find that

(V2+K3)Gp(r,r')=0, (32

IGh(r,r") dGq(r,r’) ) . ) .
aGh(r,r')-l-—&nl = — a,GO(r’rr)_l_T , A=fle'mz+f2€‘7'mz, B=f3e'mz+ fAeﬂmz' (39

for r on the boundaries. (33  Wherefy, f5, f5, andf, are given by

A. Slab geometry fl:%(a2+ m?)eM(Za*20),

Boundaries of arbitrary shapes are, in general, difficult to
incorporate into the solution of the photon diffusion equation fo _ ‘
[Eq. (13)]. Here, we consider a slab geometry shown in Fig. fo=— E(aJr im)2e'™Ma %), (40)
12. Within the slab is the scattering medium and outside the
slab is air. This slab geometry is to approximate the com- f f
pressed breast configuration, which is suitable for clinicalf,— — _°(a+im)2eim(zdfzo), f4:_°(a2+m2)eim(zd+20),
breast lesion diagnosis. B

Suppose the two surfaces of a slab turbid medium are at (41)

z=7, and z=z4 as shown in Fig. 12. Again we use the
angular spectrum representation of the Green’s functiofith
Gy(r,r'), i.e., .
i . .
fo=gm.  B=(a+im)?eME %) —(q—im)%e M2,
Gh(r,r’)zf J dpdqG,(p,q,z,z" e 127lPx—x")+aly=y")] 42)
(34)

Finally, for a slab geometry, the Fourier component of

Substituting this equation in E¢32), we find for any given total Green’s functiorG(p,q,z,z') in K space is

spatial frequenciesp(q), Gn(p,q,z,z') satisfies the follow-

ing one-dimensional homogeneous Helmholtz equation: é(p,q,z,z’)=Go(p,q,z,z’)+Gh(p,q,z,z’)
7 :foeim|zfz’\+fleim(z+z’)+f2efim(zfz’)
£+m2 Gh(p.9,2,2")=0, (39 faeimEz) 4 f e imzte), 43)
where m=[k§—(27r)2(p2+q2)]1’2 and Im)>0. The Using é(p,q,z,z’), the relation between the scattered

boundary conditions given by E¢33) for a slab geometry wave Ci)sc(p,q,zd) and the heterogeneity function

SAhOWH in F|g 12 can be rewritten for the angular Spectrunﬁ'(p,q,ZObJ) for a slab geometry within “thin” slice approxi_
Gn(p,q,z,2') as mation is
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Slab Medium Slab Medium simply because we lose photons through the finite bound-
Saenens =T Ay aries. When we use the Green’s function of an infinite me-
dium to reconstruct the image for a slab geometry, the over-
estimate of the Green'’s function is responsible for the nosier

_.. .' . | image structuresartifactg in Fig. 13c). The overestimated
Thin Stice infinite Green’s function also results in smaller reconstructed
= - optical properties, e.g., the reconstructed value by using the

@ ®) tel wrong infinite Green’s function,Sugyong="0.0056 cm*,

FIG. 13. (8 shows the position of a 0.3 cm thick, 1.0 1S about 4_1t|mes as small as the valué,u,;fsﬂab
x 1.0 cn? absorbing slice atl, —1, 3 cm in a slab turbid medium. =0.0240 cm: reconstructed by using the_approprlate slab
The two surfaces of the slab are respectively at plane® cm  Green’s function. We see that the appropriate Green’s func-
andz=5 cm. The source is at origin at one of the slab surface ( tion for a slab geometrjEq. (43)] produces cleaner images
=0 cm) and the detector scans at the other surface5( cm).  and more accurate optical properties than the Green’s func-
The reconstructed absorption image using the “slab” Green’s function which is only suitable for an infinite mediufiq. (16)].
tion [Eq. (43)] is shown in(b). The reconstructed absorption image
using thewrong “infinite” Green’s function[Eq. (16)] is shown in

© B. Semi-infinite geometry
).

As an extension of the above derivation, we can easily

- obtain the Fourier component of the total Green’s function

'”r(p,q,zobj)% (DfC(p—qzd) (44) G%™(p,q,z,2') for a semi-infiniteturbid medium. Alterna-

AzG(p,q,Zopj) tively we can start with the Green’s function for a slab ge-
ometry[Eq. (43)], then move the lower boundary of the slab
The 2D inverse Fourier transform d¥(p,q,z,p;) gives the in Fig. 12 to the negative infinity, i.ezo— —c. Note that
heterogeneity functiorl(x,y,z,p;) in real x-y space. The Im(m)>0 and therefore all terms in E¢43) with e™'™%
optical properties of the inhomogeneities can then be obvanish whenz,— —. The Fourier component of the total
tained, e.g., for absorbing objects, we hadig,(X,Y,Zop)) Green’s functiorG%¢™{p,q,z,z’) for a semi-infinitemedium
=Tabs(x,y,zobj)/[—v/DOCDg'ab(x,y,zob,-)]; and for scatter- at any spatial frequenciep(q) in K space is thus
ing objects, we have ud(X,Y,Zob)) =Ts(X,Y:Zob))/ o , ) o ,
[SDOkg/UCD(S)Iab(X,y,Zobj)]_ Gsem(p,q,z,z’)=f0e'm|z‘z \+f2emb—|m(z+z ). (45)
Using the appropriate Green’s functi¢iqg. (43)] for a

slab geometry, we reconstructed a 2D optical image of &lere, the coefficient§, and f3°™ are given by

slice embedded in a slab turbid medium. The slab geometry _ .

is shown in Fig. 12 where the two surfaces are at planes ¢ _ psemi_ _ 0‘+'mezimzd 46)
=0 andz=5 cm, respectively. The source is at the origin. 2m’ 4 %a—im '

A 1.0x1.0 cnf slice of 0.3 cm thick is atl,—1,3) cm[see
Fig. 13a)] and the detection plane is at the top surface of theThe first term on the right hand side of E@5) represents
slab =5 cm). The slice has a higher absorption coeffi-the Green’s function in an infinite medium, and the second
cient than the background medium but shares the same scagérm represents the wave, which is reflected by the boundary
tering coefficient with the background, e.gua.pj  atz=z4 and propagates backward along the negatidizec-
=0.04 cm! and Ksobj= 80 cm ! for the slice andu,,  tion. For arbitrary boundaries the solution of the Green'’s
=0.02 cmi ! and ul,=8.0 cmi ! for the background. The function are in general difficult to obtain.
total and background diffuse photon density waves at the top
surfacez=5 cm are calculated using the finite difference C. Re-emission geometry
method. . . .

The reconstructed absorption image using the appropriate In the preceding discussions th? source and th.e detector
Green’s functioriEq. (43)] for the slab geometry is shown in were assumed to be on the opposite sides of the inhomoge-

. . rec neity. This configuration is called transmissi¢see Fig.
Fig. 13b), and the reconstructed absorption d, sy 14(a)]. It is suitable for two-plate soft compression geometry

— ~1 i i th

:88%’8 Cnll’ \'/:Vh'Ch IS cIo.se to the ?xpected vaIWgaLad h in breast cancer studies, with the source placed on one plate
S cm-. For comparison, we a,so reconstructed the, g the detector scanned over the other plate. Interestingly,
image of the slice using therong Green’s function, i.e., the

S oo the derivation is not limited to this transmission configura-
Green'sGg(r,r"), which is only correct for the infinite me- g

di h | b C i sh ._tion. Recall that dependence of the angular spectrum algo-
ium [Eq. (16)]. The resultant absorption image is shown in jinm on the source position is implied in the heterogeneity
Fig. 13c). We found that the position of the slice can be well

db ing diff s f . function [see Eqs(10) and (11)]. The relation between the
reconstructed by using different Green's functions. Howeveg o oqeneity function and the scattered wave measured at

the image shown in Fig. 18), which is reconstructed by o getection planisee Eq(22)] does not explicitly depend
using thewrong |nf|_n|te _Green’s funcﬂo_n, has more artifacts on the source position. The light source and the detector can
the}n that_shown n F'g', 18). Wh'Ch |s.reconstructed by' be placed on the same side or on the opposite sides of the
using theright slab Green’s f“PCt'O”- Notice that the Green's object without affecting the conclusion of the above deriva-
function for a slab geometryG(p,q,z,2')| is smaller than  tion. Hence, we can apply the algorithm equally well to an-
the Green’s function for an infinite geometi@q(p,q,z,2’)| other geometry—the re-emission geomdisge Fig. 14)]
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Transmission

Fiber

(Scanning)

Re-emission

Z  Detection Plane Detection

Fiber
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Source Fiber

Object
Source Fiber

v
x ~

(@)

Absorbing Sphere Re-emission Image Transmission Image

(©) (d) (e)

FIG. 14. (a) shows the transmission geometry. The source is at the origin and the detector scans in a ptang @b) shows the
re-emission geometry where the source is at the center of the detection plamejat(c) illustrates a spherical absorbing object(at 1,
2) cm embedded within a slab turbid medium. The two surfaces of the slab axg=& cm andzy=4.0 cm, respectively. For both
transmission and re-emission geometries, the scattered waves in the detection @Elgnd atm are calculated using the exact DPDW
solution for a slab geometry over ax® cn? region with x-y steps of 0.6 cm. The reconstructed images for the re-emission and
transmission geometries are showridihand(e), respectively. The two images look similar. We also found that the reconstructed absorption
coefficients are also about the same under both geometries.

[28,29. In the re-emission configuration, the detector scangonfiguration, both the source and detector are placed on the
in the plane which contains the source. This could be necesep surface of the slab, i.e., in a planegat=4 cm. The
sary, for example, in brain function studies. The re-emissiorscattered wave is calculated over X9 cn? region with
geometry could also be useful for studies of large dense&-y steps of 0.6 cm. The source is placed at the center of the
breast tissues in which fewer photons pass through the tissusquare scanning region in the detection plane, i.€Q,4, 4

In the transmission geometry, we measure the scatterez. The reconstructed image for the re-emission geometry is
wave propagatingorward away from the source; in the re- shown in Fig. 14d). For comparison we also reconstruct the
emission geometry, we measure the scattered wave propagatage of the same object for the transmission geometry. In
ing backwardtowards the source. For a re-emission geom-his case the source is at the origl 0, O cm, on the lower
etry and within a thin slice approximation, the relation of thesurface of the slab, with all other configurations kept the

heterogeneity functioﬁ(p,q,zobj) in K space with the mea- Same as in the re-emission geometry. The_ image is shown in
sured scattered wave in the plarez, is given by the same Fig. 14€). We see that the image quality in these two con-

equation as for the transmission geomdtgy. (22)]. Here,
we rewrite the relation for the re-emission geometry:

qA)sc(piind)
AzG(p,a,24,Z0p))

T(P,0,Zon) = (47)

figurations is about the same. The ratio of the reconstructed
absorption coefficient for the re-emission geometry to that
for the transmission geometry Buy e enf Stta trans™ 1-1-
The finite object sizdas opposed to a “thin” slicemight
contribute to the small difference in the reconstructed ab-

sorption.

where an appropriate Green’s function for an infinite me-

dium [Eq. (16)] or a slab mediumEq. (43)] has been as-

sumed.

VIll. SUMMARY

Simulations have shown the applicability of the algorithm  We have presented a full exposition of our recent work
to the re-emission geometry. Consider an absorbing sphericttiat employs the angular spectrum algorithm for optical dif-

inhomogeneity of 0.5 cm radius &, 1, 2 cm embedded in
an otherwise homogeneous slab turbid medilsee Fig.
14(c)]. The two surfaces of the slab are =0 cm and

fraction tomography with diffuse photon density waves. The
image reconstruction becomes practically easy for thin het-
erogeneities wherein the heterogeneity function of interest is

z4=4.0 cm, respectively. The absorption and scattering coproportional to the scattered wave measured at the detection

efficients of the sphere areu,=0.04 cm! and u.

plane, i.e.,T(p,d,Zop;) = Psc(P.0,24). We have shown that

=8.0 cm ' while the background optical properties are although this relation is accurate only for thin inhomogene-
1a0=0.02 cm! and ul,=8.0 cm 1. For the re-emission ities, it provides an approximate short cut for fast, 2D pro-
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jection imaging of spatially extended objects. The recon- I (n) LI, (0)

struction is very rapid, requiring only a forward and inverse U S .

Fourier transform, e.g., it takes less than 0.2 second on ¢ m ' m
Sparc10 workstation to reconstruct an image~df000 pix- 2". ; 2”@ 4

els. For spatially extended objects, although the recon"—e——»—— Re (n) . Re(n)
structed optical properties are not accurate, the ratio of the * ~2x “2n

reconstructed optical properties of multiple objects are close ~ ™-..._]...-- -

to the true ratio. In this sense we say thanhtrastimage can

still be obtained by using this algorithm. The feasibility for (a) (b)

using this algorithm for image reconstruction of absorbing

and scattering inhomogeneities has been experimentally FIG. 15. There are two poles for the integral omén Eq. (B6).
demonstrated20]. We have also shown that the absorption(a): for z>0 the singularity is an=—m/27 and the integral is
and scattering properties can be reconstructed simultagdone along the lower close curvd): for z<<0 the singularity is at
neously using the angular spectrum algorithm with scatterefl=m/2m and the integral is done along the upper close curve.
wave measured at two different modulation frequencies. AU-\ppENDIX B: THE WEYL EXPANSION OF GREEN'S

thors perceive that the angular spectrum algorithm could po- FUNCTION
tentially apply for breast cancer imaging given that boundary
matching is employed to reduce the boundary eff@g]. Consider an infinite turbid mediunu,, and ., are re-

The method could also be used for differential imaging ofspectively the absorption and scattering coefficients. The
the preferential accumulation of an exogenous contrast age@reen’s functionGy(r,r’) satisfies the following equation:
in biological tissue$31]. b, o , )

We have extended the theory to other geometries includ- (VE4kg)Go(r,r')=—4(r,r'), (B1)
ing the slab and the semi-infinite geometry for both transmis- _ . I )
sion and re-emission configuration. The theory was con‘-’i’here I(,O_.[(_v“a°+'w)/.[)°]. with 1m(ky) >0; Do
firmed in simulation experiments. =v/(3ugp) is the photon diffusion coefficient. The solution

of the Green’s function i$32]
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The Green’s function is related to its Fourier transform by
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where we assume’=0 without losing generality and

APPENDIX A: CONVENTIONS USED IN THIS PAPER (p,qg,n) are the spatial frequencies. Plugging EB3) into

REGARDING FOURIER TRANSFORM Eg. (B2) and using the integral expression for théunction

The conventions regarding the forward and inverse Fou[Eq- (A3)], we have

rier transforms are as follows. Consider a functidx) in . 5 s 5 o o
one dimension: f J fGo(p,q,n)[ko—(Zw) (pe+qg=+n9)]
Forward Fourier transform:
Xe—i27r(px+qy+nz)dp dq dn

F(p)= f f(x)€!2™Pdx; (A1) —_ f j f e iZnPxr i dgp dgdn  (B4)

Without a rigorous proof, we can obtain the Fourier trans-
form of the Green’s function just by looking at both sides of
the above equation, i.e.,

0= [ Fae 2o w2 ] 1
G 1 Yn = = 1
AP s DK (2m
and theé function is therefore given by (BS)

wherem=[k3— (27)?(p?+g?)]"? and Im(m)>0. Eq.(B3)
can then written as

) e—i27rnz
_ o o= [ [apsqenomm [ 2T,
Using these conventions, we eliminate the factor outside ol 1) Pcd (2m)2n?—m?

the integral of forward and inverse Fourier transforms. (B6)

Inverse Fourier transform:

8(p)= f e'2™Pdx,  §(x)= f e 27PXdp.  (A3)
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The integral over spatial frequenaycan first be done by fore, we choose the pole in the lower half spfEg. 15a)],
“pole” structure analysis. There are two poles in the integrale.g.,n=—m/2# [recall Im({m)>0, which gives Imfi)<0].
over n as shown in Fig. 15. For>0, we require ImQ) Note that the integral is along the clockwise direction which
<0 to ensure the convergence of the integral avefhere-  gives us an extra minus sign. The resultant integral is

efianz _ e*iZ'?TnZ n=—mi2r | )
f m dn=—2mi m = me'mz. (B7)
(2w)z(n+ﬁ)(n—ﬁ) (277)2(n—2?)

Similarly, for z<0 we require Im)>0. Therefore we choose the pole in the upper half spaige 15b)], e.g.,n=m/27.
The integral is along the counter-clockwise direction so there is no extra minus sign in this case. The resultant integral is thus

e—i27rnz e—ianz n=mi2m | )
j m m dn=27i = me_lmz. (88)
(277)2(n+ E)(n— E)

Combining Egs(B7) and (B8), we have the general expression for the integral over

efizfrrnz i iz
—_ AiMz
f (2m)? 2_mzdn 2me . (B9)

(277)2(n+ 2%)

Substituting this equation into E¢B6), we then end up with the Weyl expansion of the Green’s function:

Go(r)=J fdp dq e*iz”(p”qy)l—eim'Z‘, (B10)
2m
wherem=[k3— (2)?(p?+g?)1*? and Im(m)=>0.

The Weyl expansion represents the superposition of elementary harmonic waves ianithg directions g~ '27(PX*a¥)).
the harmonic waves exponentially attenuate in zhdirection away from the plane=0 which contains the source. The
harmonic waves and the attenuation fad@f"%/2m are so combined that the double integral in E2{L0) over all the spatial
freqlijencies 0,q) vields the elementary damped spherical wave on the left-hand side of(E®), i.e., Gy(r)
="/ (4r).
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